添加链接
link之家
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health. Learn more about our disclaimer.
Nan Fang Yi Ke Da Xue Xue Bao. 2022 Apr 20; 42(4): 584–590.
PMCID: PMC9085594

Language: Chinese | English

多核糖核苷酸核苷转移酶1在氧糖剥夺诱导心肌细胞凋亡损伤中的作用

Role of PNPT1 in cardiomyocyte apoptosis induced by oxygen-glucose deprivation

张 信琴

西南交通大学医学院,四川 成都 611756, College of Medicine, Southwest Jiaotong University, Chengdu 611756, China 西部战区总医院心内科,四川 成都 610083, Department of Cardiology, General Hospital of Western Theater Command, Chengdu 610083, China

Find articles by 张 信琴

汪 雄

西部战区总医院心内科,四川 成都 610083, Department of Cardiology, General Hospital of Western Theater Command, Chengdu 610083, China

Find articles by 汪 雄

李 琴

西部战区总医院干部病房二科,四川 成都 610083, Second Ward of Cadres, General Hospital of Western Theater Command, Chengdu 610083, China

Find articles by 李 琴

陈 颖梅

西部战区总医院心内科,四川 成都 610083, Department of Cardiology, General Hospital of Western Theater Command, Chengdu 610083, China

Find articles by 陈 颖梅

张 新颜

西部战区总医院医学信息数据室,四川 成都 610083, Medical Information Data Office, General Hospital of Western Theater Command, Chengdu 610083, China

Find articles by 张 新颜

王 鹏

西部战区总医院心内科,四川 成都 610083, Department of Cardiology, General Hospital of Western Theater Command, Chengdu 610083, China

Find articles by 王 鹏

袁 木

西部战区总医院卫勤中心,四川 成都 610083, Medical Center, General Hospital of Western Theater Command, Chengdu 610083, China

Find articles by 袁 木

裴 海峰

西南交通大学医学院,四川 成都 611756, College of Medicine, Southwest Jiaotong University, Chengdu 611756, China 西部战区总医院心内科,四川 成都 610083, Department of Cardiology, General Hospital of Western Theater Command, Chengdu 610083, China 西南交通大学医学院,四川 成都 611756, College of Medicine, Southwest Jiaotong University, Chengdu 611756, China 西部战区总医院心内科,四川 成都 610083, Department of Cardiology, General Hospital of Western Theater Command, Chengdu 610083, China 西部战区总医院干部病房二科,四川 成都 610083, Second Ward of Cadres, General Hospital of Western Theater Command, Chengdu 610083, China 西部战区总医院医学信息数据室,四川 成都 610083, Medical Information Data Office, General Hospital of Western Theater Command, Chengdu 610083, China 西部战区总医院卫勤中心,四川 成都 610083, Medical Center, General Hospital of Western Theater Command, Chengdu 610083, China 胰蛋白酶(Gibco);RNA提取试剂盒和反转录试剂盒及SYBR(TaKaRa);qPCR引物由成都擎科伟业生物科技有限公司合成;PNPT1抗体(Proteintech);PNPT1 siRNA三条序列和对照序列由成都擎科伟业生物科技有限公司合成;脂质体Lipofectamine 2000 (Invitrogen);ɑ-Tubulin抗体(Affinity);Annexin V-FITC/PI凋亡试剂盒(Solarbio);JC-1试剂盒(Solarbio);山羊抗兔Ⅱ抗(Solarbio);ECL发光液(Millipore)。

1.3. 主要方法

1.3.1. HL-1细胞培养

小鼠HL-1细胞的培养基成分:10%胎牛血清、1%青霉素/链霉素的MEM培养基,置于5%CO 2 、37 ℃培养箱中孵育。随后每2 d更换培养液,待细胞生长融合至约90%时,用0.25%胰酶消化后按照1∶3传代培养。选择对数生长期的细胞进行实验。

1.3.2. OGD实验模型建立

根据参考文献[ 5 ]的方法,将对数生长期的HL-1细胞接种于60 mm培养皿中,于第2天将已贴壁细胞更换为无糖无血清培养基并置于缺氧培养箱中(1%O 2 、94%N 2 、5%CO 2 、37 ℃),按照实验需求培养不同时间后用于随后的实验。实验进行如下分组:正常组(Control)、氧糖剥夺组(OGD)、NC-siRNA组(转染乱码RNA)、PNPT1- siRNA组、OGD + NCsiRNA组和OGD+PNPT1-siRNA组。

1.3.3. CCK-8检测细胞存活率

取对数生长期细胞,按6×10 3 /孔细胞接种于96孔板,过夜贴壁后,对照组置于5%CO 2 细胞培养箱中正常培养,实验组经不同OGD时间处理后,各组细胞按CCK-8试剂盒说明书,加入CCK-8反应液,于37 ℃孵箱中孵育1 h,酶标仪450 nm波长检测吸光度值 A 450 nm

1.3.4. 细胞PNPT1 siRNA转染

将细胞悬液置于孔板中,细胞生长至约40%密度时,按照试剂使用说明用Lipofectamine 2000作为转染试剂以50 nmol/L浓度进行PNPT1 siRNA转染或对照载体转染,每组设置3个复孔。

1.3.5. qPCR检测ACTB mRNA、TUBA mRNA水平

按照RNA提取试剂盒说明书提取HL-1细胞的总RNA。标准化各组RNA浓度,反转录为cDNA后进行扩增,以7SL为内参照,用2 -ΔΔCt 法计算ACTB mRNA以及TUBA mRNA的相对表达量。ACTB的上游引物序列为:5'-AAG GCC AAC CGC GAG AAG AT-3',下游引物序列为:5'-ACA GCC TGG ATA GCA ACG TAC A-3';TUBA的上游引物为:5'-TCT GTG AAA CTG GTG CTG GA-3';下游引物序列为:5'-AGT GAC CAC GGG CAT AGT TGT T-3';7SL的上游引物序列为:5'- ATC GGGTGT CCG CAC TAA GTT-3',下游引物序列为:5'-CAG CAC GGG AGT TTT GAC CT-3'。

1.3.6. Western blot检测细胞PNPT1的表达

按照蛋白提取说明书提取HL-1细胞蛋白,用BCA蛋白定量法测定各组蛋白浓度。按20 μg总蛋白量上样,SDS-PAGE分离蛋白,转印至PVDF膜,5% BSA中室温封闭1.5 h。加入相应的Ⅰ抗(PNPT1按1∶2000稀释),4 ℃摇床孵育过夜。次日回收Ⅰ抗,TBST洗膜3次,10 min/次,加入Ⅱ抗(1∶5000)室温孵育1 h。再次TBST洗膜,与ECL发光液充分反应后扫描显影。Image J软件分析结果。

1.3.7. 流式细胞术检测细胞凋亡率

将HL-1细胞按1×10 5 / 孔接种于6孔板中,贴壁后更换为无双抗培养液,同时加入PNPT1-siRNA1或NC-siRNA处理24 h后再OGD处理16 h,收集上清,用不含EDTA的0.25%胰酶消化收集细胞,PBS洗涤3次。按照Annexin V-FITC/PI凋亡试剂盒说明书进行染色,在1 h内用流式细胞仪检测各组细胞凋亡情况。Flow Jo软件分析结果。

1.3.8. JC-1检测线粒体膜电位

将各组细胞用胰酶消化,PBS重悬,2000 r/min下离心5 min,重悬于500 µL细胞培养液中;按照JC-1线粒体膜电位水平检测试剂盒说明书,制备反应缓冲液备用,吸取500 µL的JC-1工作液将细胞均匀悬浮,置于培养箱内20 min,取出细胞,2000 r/min离心5 min,加入稀释好的反应缓冲液洗涤2次,再用500 µL JC-1染色缓冲液(1×)重悬细胞,用流式细胞仪分析结果。

1.3.9. 透射电镜观察线粒体形态

0.25%胰酶消化收集各实验组细胞,PBS液冲洗2次,之后向细胞内加入3% 戊二醛,固定1 h,PBS液冲洗2次,再向细胞内添加1% 锇酸固定1 h,丙酮酸梯度脱水;包埋,超薄切片,铀铅双染色;透射电子显微镜拍片。

1.4. 统计学处理

采用SPSS20.0软件进行统计分析,计量资料采用均数±标准差表示,多组间比较采用单因素方差分析, P < 0.05为差异有统计学意义。

2. 结果

2.1. OGD诱导HL-1心肌细胞凋亡损伤

给予HL-1心肌细胞不同时间梯度OGD诱导后,利用CCK-8检测细胞存活率。结果显示,随着OGD诱导时间延长,HL-1心肌细胞存活率呈下降趋势( 图 1A P < 0.05),OGD诱导16 h心肌细胞存活率最低。在16 h诱导节点检测心肌细胞凋亡率显示细胞发生明显凋亡( 图 1B P < 0.05)。

An external file that holds a picture, illustration, etc. Object name is nfykdxxb-42-4-584-1.jpg

OGD诱导心肌细胞凋亡损伤

OGD induces apoptosis of cultured mouse cardiomyocytes (HL-1 cells). A : CCK-8 assay for detecting cell survival rate. B : Flow cytometry for detecting cell apoptosis rate. * P < 0.05 vs 0 h, # P < 0.05 vs control ( n =6).

2.2. OGD诱导增加HL-1心肌细胞胞质PNPT1含量

Western blot结果显示,随着OGD诱导时间延长,HL-1心肌细胞胞质中PNPT1的蛋白水平呈上升趋势,且在诱导16 h节点PNPT1蛋白水平最高,这与OGD诱导HL-1心肌细胞凋亡的趋势一致( 图 2 P < 0.05)。

An external file that holds a picture, illustration, etc. Object name is nfykdxxb-42-4-584-2.jpg

不同氧糖剥夺(OGD)时间处理后HL-1细胞PNPT1的蛋白表达

Protein expression of PNPT1 in HL-1 cells exposed to different OGD time. * P < 0.05 vs 0 h ( n =6).

2.3. PNPT1敲低减轻OGD诱导的HL-1心肌细胞凋亡

引入siRNA在OGD条件下敲减PNPT1表达,敲减效率验证试验结果显示PNPT1-siRNA1效率最高( 图 3A P < 0.05),且siRNA敲减可以有效降低胞质PNPT1蛋白含量。敲减PNPT1后,利用流式细胞术检测HL-1心肌细胞OGD诱导下的凋亡情况,结果显示,未予以OGD诱导时PNPT1敲减未明显影响HL-1心肌细胞凋亡,而予以OGD诱导后PNPT1敲减明显降低了细胞凋亡水平( 图 3B P < 0.05)。

An external file that holds a picture, illustration, etc. Object name is nfykdxxb-42-4-584-3.jpg

敲减PNPT1减轻OGD诱导的HL-1细胞凋亡

Knockdown of PNPT1 reduces OGD-induced apoptosis of HL-1 cells. A : PNPT1 protein expression detected by Western blotting. B : Flow cytometry for detecting cell apoptosis rate. * P < 0.05 ( n =6).

2.4. PNPT1敲低减少OGD条件下凋亡相关mRNA降解

qPCR结果显示,OGD诱导引起了ACTB和TUBA mRNA的降解( 图 4A C P < 0.05)。利用siRNA敲减PNPT1表达后发现与NC-siRNA+OGD组相比,siRNA1+OGD组ACTB和TUBA mRNA降解被抑制( 图 4B D P < 0.05)。

An external file that holds a picture, illustration, etc. Object name is nfykdxxb-42-4-584-4.jpg

敲减PNPT1抑制HL-1细胞OGD条件下凋亡相关mRNA的降解

Knockdown of PNPT1 inhibits degradation of apoptosis-related mRNA in HL-1 cells with OGD. A , B: qPCR for detecting the relative expression level of ACTB mRNA. C , D : qPCR for detecting relative expression level of TUBA mRNA. n =6. * P < 0.05 vs control, # P < 0.05 vs NC-siRNA, P < 0.05 vs NC-siRNA+OGD ( n =6).

2.5. PNPT1敲低减轻HL-1心肌细胞OGD下线粒体损伤

利用JC-1检测线粒体膜电位,结果显示OGD可诱导线粒体膜电位下降,而敲减PNPT1后OGD诱导的线粒体膜电位下降得到部分逆转( 图 5A P < 0.05)。透射电镜结果显示,OGD诱导后线粒体形态发生明显变化,整体呈肿胀状态,内部电子密度降低,嵴消失,形成空泡结构;PNPT1敲减后线粒体形态得到明显改善,整体肿胀程度降低,内部可见完整的嵴结构( 图 5B )。

An external file that holds a picture, illustration, etc. Object name is nfykdxxb-42-4-584-5.jpg

敲减PNPT1减轻OGD条件下线粒体损伤

Knockdown of PNPT1 reduces mitochondrial damage in HL-1 cells exposed to OGD. A : Flow cytometry for detecting mitochondrial membrane potential (JC-1). B : Transmission electron microscopy for observing morphology of cell mitochondria. * P < 0.05 vs NC-siRNA+OGD ( n =6).

3. 讨论

在动脉粥样硬化斑块等病理因素作用下,IHD患者心脏冠状动脉血流被限制,心肌处于慢性缺血条件下,导致心肌细胞凋亡,纤维组织增生,引起心肌重构,心脏功能降低和心律失常,甚至诱发死亡 [ 17 - 19 ] 。研究发现,急性心肌梗死后梗死周围的区域有显著的心肌细胞凋亡 [ 20 ] ,而且患者在急性心肌梗死后出现症状性心力衰竭与细胞凋亡率显著增加相关 [ 21 ] 。因此,抑制心肌细胞凋亡,减少细胞数量损失被认为是预防IHD患者心脏损伤的重要策略,靶向mRNA治疗凋亡相关疾病及心血管疾病也是目前的研究热点 [ 22 , 23 ] 。本研究聚焦于mRNA降解介导心肌细胞凋亡的新视角,基于OGD诱导HL-1心肌细胞构建的体外缺血模型,利用基因敲减技术探索了PNPT1介导的mRNA降解在心肌细胞缺血凋亡中的重要作用。本研究发现OGD下HL-1心肌细胞中PNPT1异常蓄积于细胞质,并引起mRNA降解和线粒体损伤;而敲减PNPT1后OGD诱导的mRNA降解、线粒体损伤和细胞凋亡均得到逆转。

mRNA代谢正常对细胞存活至关重要。作为蛋白合成模板,mRNA决定基因表达蛋白产物的最终氨基酸序列,一旦蛋白合成障碍,细胞的正常结构和功能将遭到破坏。而在细胞的正常生命活动中,mRNA的降解是必不可少的,其作用在于消除产生异常蛋白质的缺陷mRNA、终止该核糖核苷酸的循环和适应环境的变化 [ 24 ] 。既往研究发现,哺乳动物细胞中mRNA和rRNA在早期凋亡反应中就发生降解,甚至早于DNA片段裂解 [ 13 ] 。这一现象也在经典细胞凋亡途径中得到证实,在细胞凋亡早期就观察到广泛的mRNA降解,并以ACTB TUBA等为代表的管家基因降解最为显著 [ 9 ] 。显然,mRNA降解是细胞凋亡过程的关键环节,但其作用揭示较为局限,是否介导心肌细胞缺血性凋亡也尚不清楚。本研究以管家基因ACTB和TUBA mRNA作为观察窗口,发现OGD诱导HL-1心肌细胞凋亡伴随mRNA降解增加,证实mRNA降解同样在心肌细胞缺血凋亡中发挥重要作用。

作为触发mRNA凋亡的核酸外切酶,PNPT1的酶活性发挥决定于其亚细胞定位。既往研究提示,HCT 116细胞中PNPT1细胞质异常蓄积诱发了广泛mRNA降解和细胞凋亡;而干预胞质中PNPT1水平可显著逆转这一过程 [ 16 ] 。实际上PNPT1的生物学功能十分复杂,它既能促进某些mRNA的降解也在一部分mRNA的稳定维持中发挥作用 [ 25 , 26 ] 。有研究在黑色素瘤细胞中过表达PNPT1后发现,PNPT1通过激活PKR-EIF2α通路进而下调抗凋亡蛋白BCL-X表达最终导致肿瘤细胞凋亡 [ 27 ] 。此外,PNPT1还被证实通过降解原癌基因cmyc的mRNA使细胞周期停滞在G1期,导致细胞S期缩短而发生凋亡 [ 14 ] 。本研究揭示了PNPT1在心肌细胞缺血凋亡中的重要作用,发现OGD下PNPT1异常蓄积于HL-1心肌细胞胞质并诱导mRNA降解及线粒体损伤,最终导致细胞凋亡。

综上所述,本研究基于OGD诱导HL-1心肌细胞构建的体外心肌缺血模型,初步揭示了PNPT1介导的mRNA降解在心肌细胞缺血性凋亡中的重要作用。心房肌细胞缺血性凋亡一直被认为是缺血性心肌病心房重构的细胞基础,心房肌细胞丢失诱发的纤维化增生也是导致AF等心律失常的主要机制 [ 28 ] 。我们在与人原代心房肌细胞具有相似分子反应的HL-1心肌细胞上验证的介导细胞缺血性凋亡的新机制将为缺血性心肌病的抗凋亡靶点开发提供理论基础 [ 29 ] 。此外,我们进一步揭示了PNPT1介导mRNA降解对线粒体的损伤效应,这一发现进一步提示了mRNA降解在心肌细胞缺血性凋亡中的上游调控地位。

Biography

张信琴,硕士,E-mail: moc.qq@889117457

Funding Statement

国家自然科学基金(81970241);西部战区总医院院管重点项目(2021-XZYG-A03)

Funding Statement

Supported by National Natural Science Foundation of China (81970241)

References

1. 中国心血管健康与疾病报告编写组 中国心血管健康与疾病报告2020概要 中国循环杂志 2021; 36 (6):521–45. doi: 10.3969/j.issn.1000-3614.2021.06.001. [ CrossRef ] [ Google Scholar ]
2. Buja LM, Maximilian BL. Mitochondria in Ischemic Heart Disease. Adv Exp Med Biol. 2017; 982 :127–40. [ PubMed ] [ Google Scholar ]
3. Hu YF, Chen YJ, Lin YJ, et al. Inflammation and the pathogenesis of atrial fibrillation. Nat Rev Cardiol. 2015; 12 (4):230–43. doi: 10.1038/nrcardio.2015.2. [ PubMed ] [ CrossRef ] [ Google Scholar ]
4. Jame S, Barnes G. Stroke and thromboembolism prevention in atrial fibrillation. Heart. 2020; 106 (1):10–7. doi: 10.1136/heartjnl-2019-314898. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
5. Tsai CF, Yang SF, Lo CH, et al. Role of the ROS-JNK signaling pathway in hypoxia-induced atrial fibrotic responses in HL-1 cardiomyocytes. Int J Mol Sci. 2021; 22 (6):3249–57. doi: 10.3390/ijms22063249. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
6. Adachi H, de Zoysa MD, Yu YT. Post-transcriptional pseudouridylation in mRNA as well as in some major types of noncoding RNAs. Biochim Biophys Acta BBA Gene Regul Mech. 2019; 1862 (3):230–9. doi: 10.1016/j.bbagrm.2018.11.002. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
7. Gao C, Wang YB. mRNA metabolism in cardiac development and disease: life after transcription. Physiol Rev. 2020; 100 (2):673–94. doi: 10.1152/physrev.00007.2019. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
8. Wu T, Wu D, Wu QH, et al. Knockdown of long non-coding RNAZFAS1 protects cardiomyocytes against acute myocardial infarction via anti-apoptosis by regulating miR-150/CRP. J Cell Biochem. 2017; 118 (10):3281–9. doi: 10.1002/jcb.25979. [ PubMed ] [ CrossRef ] [ Google Scholar ]
9. Thomas MP, Liu X, Whangbo J, et al. Apoptosis triggers specific, rapid, and global mRNA decay with 3' uridylated intermediates degraded by DIS3L2. Cell Rep. 2015; 11 (7):1079–89. doi: 10.1016/j.celrep.2015.04.026. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
10. Tokmakov AA, Iguchi S, Iwasaki T, et al. Global decay of mRNA is a hallmark of apoptosis in aging Xenopus eggs. RNA Biol. 2017; 14 (3):339–46. doi: 10.1080/15476286.2016.1276695. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
11. Mroczek S, Kufel J. Apoptotic signals induce specific degradation of ribosomal RNA in yeast. Nucleic Acids Res. 2008; 36 (9):2874–88. doi: 10.1093/nar/gkm1100. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
12. Hoat TX, Nakayashiki H, Tosa Y, et al. Specific cleavage of ribosomal RNA and mRNA during victorin-induced apoptotic cell death in oat. Plant J. 2006; 46 (6):922–33. doi: 10.1111/j.1365-313X.2006.02752.x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
13. Prete MJ, Robles MS, Guío A, et al. Degradation of cellular mRNA is a general early apoptosis-induced event. FASEB J. 2002; 16 (14):2003–5. doi: 10.1096/fj.02-0392fje. [ PubMed ] [ CrossRef ] [ Google Scholar ]
14. Das SK, Bhutia SK, Sokhi UK, et al. Human polynucleotide phosphorylase (hPNPaseold-35): an evolutionary conserved gene with an expanding repertoire of RNA degradation functions. Oncogene. 2011; 30 (15):1733–43. doi: 10.1038/onc.2010.572. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
15. Sokhi UK, Bacolod MD, Emdad L, et al. Analysis of global changes in gene expression induced by human polynucleotide phosphorylase (hPNPaseold-35) J Cell Physiol. 2014; 229 (12):1952–62. doi: 10.1002/jcp.24645. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
16. Liu X, Fu R, Pan YD, et al. PNPT1 release from mitochondria during apoptosis triggers decay of poly(A) RNAs. Cell. 2018; 174 (1):187–201, e12. doi: 10.1016/j.cell.2018.04.017. [ PubMed ] [ CrossRef ] [ Google Scholar ]
17. Liu M, Wang XR, Wang C, et al. Panax quinquefolium saponin attenuates ventricular remodeling after acute myocardial infarction by inhibiting chop-mediated apoptosis. Shock. 2013; 40 (4):339–44. doi: 10.1097/SHK.0b013e3182a3f9e5. [ PubMed ] [ CrossRef ] [ Google Scholar ]
18. Kim GH, Uriel N, Burkhoff D. Reverse remodelling and myocardial recovery in heart failure. Nat Rev Cardiol. 2018; 15 (2):83–96. doi: 10.1038/nrcardio.2017.139. [ PubMed ] [ CrossRef ] [ Google Scholar ]
19. Severino P, D'Amato A, Pucci M, et al. Ischemic heart disease pathophysiology paradigms overview: from plaque activation to microvascular dysfunction. Int J Mol Sci. 2020; 21 (21):8118–27. doi: 10.3390/ijms21218118. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
20. Saraste A, Pulkki K, Kallajoki M, et al. Apoptosis in human acute myocardial infarction. Circulation. 1997; 95 (2):320–3. doi: 10.1161/01.CIR.95.2.320. [ PubMed ] [ CrossRef ] [ Google Scholar ]
21. Abbate A, Biondi-Zoccai GGL, Bussani R, et al. Increased myocardial apoptosis in patients with unfavorable left ventricular remodeling and early symptomatic post-infarction heart failure. J Am Coll Cardiol. 2003; 41 (5):753–60. doi: 10.1016/S0735-1097(02)02959-5. [ PubMed ] [ CrossRef ] [ Google Scholar ]
22. Matsui A, Uchida S, Ishii T, et al. Messenger RNA-based therapeutics for the treatment of apoptosis-associated diseases. Sci Rep. 2015; 5 :15810–9. doi: 10.1038/srep15810. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
23. Hadas Y, Katz MG, Bridges CR, et al. Modified mRNA as a therapeutic tool to induce cardiac regeneration in ischemic heart disease. WIREs Syst Biol Med. 2017; 9 (1):1367–75. [ PMC free article ] [ PubMed ] [ Google Scholar ]
24. dos Santos RF, Quendera AP, Boavida S, et al. Major 3'-5' exoribonucleases in the metabolism of coding and non-coding RNA [M]//Progress in Molecular Biology and Translational Science. Amsterdam: Elsevier, 2018: 101-155.
25. Shi ZH, Yang WZ, Lin-Chao SE, et al. Crystal structure of Escherichia coli PNPase: central channel residues are involved in processive RNA degradation. RNA. 2008; 14 (11):2361–71. doi: 10.1261/rna.1244308. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
26. Matilainen S, Carroll CJ, Richter U, et al. Defective mitochondrial RNA processing due to PNPT1 variants causes Leigh syndrome. Hum Mol Genet. 2017; 26 (17):3352–61. doi: 10.1093/hmg/ddx221. [ PubMed ] [ CrossRef ] [ Google Scholar ]
27. Sarkar D, Park ES, Barber GN, et al. Activation of double-stranded RNA-dependent protein kinase, A new pathway by which human polynucleotide phosphorylase (hPNPaseold-35) induces apoptosis. Cancer Res. 2007; 67 (17):7948–53. doi: 10.1158/0008-5472.CAN-07-0872. [ PubMed ] [ CrossRef ] [ Google Scholar ]
28. Tsoporis JN, Fazio A, Rizos IK, et al. Increased right atrial appendage apoptosis is associated with differential regulation of candidate microRNAs 1 and 133A in patients who developed atrial fibrillation after cardiac surgery. J Mol Cell Cardiol. 2018; 121 :25–32. doi: 10.1016/j.yjmcc.2018.06.005. [ PubMed ] [ CrossRef ] [ Google Scholar ]
29. Wang JR, Wang Y, Duan ZY, et al. Hypoxia-induced alterations of transcriptome and chromatin accessibility in HL-1 cells. IUBMB Life. 2020; 72 (8):1737–46. doi: 10.1002/iub.2297. [ PubMed ] [ CrossRef ] [ Google Scholar ]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University