The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before
sharing sensitive information, make sure you’re on a federal
government site.
The
https://
ensures that you are connecting to the
official website and that any information you provide is encrypted
and transmitted securely.
As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with,
the contents by NLM or the National Institutes of Health.
Learn more about our disclaimer.
Zhejiang Da Xue Xue Bao Yi Xue Ban.
2018 Jun 25; 47(3): 219–226.
Language:
Chinese
|
English
高苯丙氨酸血症表型与基因型研究进展
Research progress on phenotype and genotype of hyperphenylalaninemia
,
1
,
2
,
3
and
1,
*
Ting CHEN
1 浙江大学医学院附属儿童医院心胸外科, 浙江 杭州 310052
Zhengyan ZHAO
2 浙江大学医学院附属儿童医院遗传代谢科, 浙江 杭州 310052
Pingping JIANG
3 浙江大学遗传学研究所, 浙江 杭州 310058
Qiang SHU
1 浙江大学医学院附属儿童医院心胸外科, 浙江 杭州 310052
1 浙江大学医学院附属儿童医院心胸外科, 浙江 杭州 310052
2 浙江大学医学院附属儿童医院遗传代谢科, 浙江 杭州 310052
3 浙江大学遗传学研究所, 浙江 杭州 310058
Corresponding author.
舒强(1965-), 男, 博士, 主任医师, 教授, 博士生导师, 主要从事出生缺陷综合防治研究; E-mail:
nc.ude.ujz@gnaiquhs
;
https://orcid.org/0000-0002-4106-6255
nc.ude.ujz@49181711
https://orcid.org/0000-0002-0530-675X
第一作者:陈挺(1994-), 男, 博士研究生, 主要从事遗传代谢病研究; E-mail: ;
,临床上将HPA分为两大类:PAH缺乏症和BH4缺乏症。其中,PAH缺乏症可根据血苯丙氨酸浓度进一步分为经典型苯丙酮尿症、轻度苯丙酮尿症和轻度HPA。BH4代谢需要五种酶,缺乏任意一种即导致BH4缺乏症,其中6-丙酮酰四氢蝶呤合成酶(6-pyruvoyl tetrahydropterinsynthase,PTPS)缺乏症最常见,其次为二氢蝶啶还原酶(dihydropteridine reductase,DHPR)缺乏症。我国大部分地区HPA中BH4缺乏症的发生率为10%~15%
。随着我国出生缺陷筛查普及,HPA已成为我国遗传代谢病防治的典型。随着临床数据的积累和基因检测体系的完善,HPA的诊断有望逐步从生化诊断转变为基因诊断,为及时、准确的治疗提供依据。本文对近年来HPA表型与基因型研究进展进行总结,为HPA的个性化治疗提供参考。
苯丙氨酸的正常代谢需要PAH和BH4共同参与(
)。PAH是苯丙氨酸羟化为酪氨酸的限速酶,在肝脏中代谢苯丙氨酸,受
PAH
基因调控。人PAH在细胞质中以二聚体或活性四聚体形式存在,两者间的平衡依赖于细胞内酸碱度。PAH的结构改变和基因突变会影响自身的酶活性。PAH蛋白分为三个功能区域:调控域(regulatory domain)、催化域(catalytic domain)和寡聚域(oligomerization domain)
。通常来说,底物苯丙氨酸与四聚体PAH调控域相结合,可以激活PAH,同时调控域Ser16的磷酸化能强化两者的结合
。BH4与PAH催化域相结合,可以稳定PAH的三维结构,防止蛋白水解和错误折叠
PAH缺乏症和BH4缺乏症的致病基因分别是PAH和BH4合成代谢中的相关基因。PAH缺乏症和BH4缺乏症在我国的分布具有一定的地域特征。来自上海、徐州、广西和南京等地区筛查数据的统计分析结果显示
,800多例HPA患者中PAH缺乏症占91.8%,BH4缺乏症占8.2%;而PAH缺乏症患者中73.7%是苯丙酮尿症患者,26.3%为轻度HPA患者。Zhu等
报道346例PAH缺乏症患者中,经典型苯丙酮尿症172例(49.7%),轻度苯丙酮尿症156例(45.1%),轻度HPA 18例(5.2%)。
1953年Jervis
发现PAH的功能缺陷是苯丙酮尿症的特征性表现。20世纪80年代,人
PAH
基因的互补DNA逐渐被克隆和验证
。1986年DiLella等
通过PCR扩增和放射性同位素标记的寡核苷酸特异性杂交在丹麦人群中发现了PAH致病的第一个突变体c.1315+1G>A;之后不久又确定了第二种突变c.1222C>T(p.R408W)
。1992年Konecki等
PAH
全基因。目前
PAH
基因数据库(PAHvdb,)共记录有1024余种突变,外显子3、6、7和11上的突变所占的比例较高,分别为10.1%、14.3%、12.6%和9.5%,突变类型包括58.0%错义突变,8.0%无义突变(包括片段缺失引起蛋白翻译终止),13.2%剪接突变,14.0%由插入或缺失引起移码突变,3.8%同义突变(
)。共835个突变位点位于PAH蛋白结构上,其中72.1%的突变发生在催化域,21.6%的突变位于调控域,6.3%的突变位于寡聚域
PAH缺乏症基因型与表型的相关性是多层次的。根据BIOPKUdb数据库()
的统计分析,PAH缺乏症患者中54.8%为经典型苯丙酮尿症,27.4%为轻度苯丙酮尿症,17.8%为轻度HPA,其中76%的苯丙酮尿症患者基因型为复合杂合突变
。PAH缺乏症的基因型在不同人群中分布不同,代谢表型也存在较大差异。据报道,东欧国家PAH缺乏症的基因型中c.1222C>T(p.R408W)突变体十分常见,其主要表型是经典型苯丙酮尿症;而在欧洲南部,大部分PAH缺乏症的基因型为具有大量酶活性残留的轻度亚型,如c.782G>A(p.R261Q),因此轻度苯丙酮尿症更常见
另外,一些
PAH
基因突变通过影响其蛋白氨基酸序列、蛋白结构或稳定性水平,决定残留的PAH活性,因此
PAH
基因突变与酶活性、BH4反应性有一定相关性。
基因突变影响残留PAH酶的活性。已知97个残留PAH酶活性的突变中
,c.202A>G(p.R68G)不影响PAH酶活性,c.569T>C(p.V190A)和c.1247C>A(p.P416Q)分别增加残留PAH酶活性至110%和111%。欧洲常见经典型苯丙酮尿症的突变位点c.1222C>T(p.R408W)、c.1066-11G>A和c.842C>T(p.P281L)对应的残留酶活性均小于10%,而c.1241A>G(p.Y414C)和c.782G>A(p.R261Q)对应的酶活性分别为正常的57%和44%。但有些突变在体外的残留酶活性有重大差异,如p.I65T和p.Y414C。基因型的残留酶活性并不是两个位点体外残留酶活性的简单加减,如复合杂合基因型c.[1222C>T]:[1241A>G]、c.[1066-11G>A]:[1241A>G]的残留PAH酶活性为正常的30%左右。目前,国际上可根据计算基因型相对应的等位基因表型值来预测患者的临床表型,此种方法对基因型为纯合子或半合子的患者临床表型预测的准确率可达90%以上,但对基因型是复合杂合突变预测的准确率仅有77.9%
。基因型、酶活性和临床表型有一定关联:基因型c.[1169A>G]:[1169A>G]的残留酶活性为65%,携带者基本是轻度HPA患者;但也有例外,如基因型c.[754C>T]:[754C>T]的残留酶活性为1%,携带者可能为经典型苯丙酮尿症、轻度苯丙酮尿症或轻度HPA患者
。中国PAH缺乏症人群中常见的基因位点,如c.721C>T(p.R241C)、c.728G>A(p.R243Q)和c.1223G>A(p.R408Q),其残留酶活性分别为25%、14%和46%,这三个突变体在我国经典型苯丙酮尿症、轻度苯丙酮尿症和轻度HPA患者中均有分布。
BH4的反应性现象最初由Kure等
在日本苯丙酮尿症患者中发现,并分别在1730例和557例PAH缺乏症患者的临床资料中证实
,从此开启了使用BH4治疗BH4反应性PAH缺乏症的新篇章。轻度HPA和将近78.8%的轻度苯丙酮尿症患者呈BH4反应性,而经典型苯丙酮尿症患者中仅约34.2%患者呈BH4反应性
,可见BH4反应性在一定程度上是表型依赖的。不同国家经典型苯丙酮尿症患者对BH4的反应性有所不同。Matalon等
研究显示,美国约50%经典型苯丙酮尿症患者对BH4有反应性;澳大利亚新南威尔士地区经典型苯丙酮尿症患者仅有7%对BH4有反应性
;而邹卉等
研究表明,我国经典型苯丙酮尿症患者约18.1%为BH4反应性。Trunzo等
报道低残留酶活性突变体对应的表型往往严重且没有BH4反应性,如位点p.L249P,仅有7%的PAH酶活性,患者表型为经典型苯丙酮尿症且没有BH4反应性;而高残留酶活性突变体,如位点p.T380M,有28%的PAH酶活性,97%的患者的表型是轻度HPA,且83%的患者呈BH4反应性。在对中国PAH缺乏症患者的BH4反应性研究中,叶军等
发现中国苯丙酮尿症患者BH4反应性中最常见p.R241C突变类型;Tao等
对我国165例苯丙酮尿症患者进行了BH4反应性研究,发现24.24%呈BH4反应性,尤其是携带p.R241C的患者,另外p.L98V和c.353-2A>T也与BH4反应性相关。Zhu等
在94例中国PAH缺乏症患者中发现48例(51%)为BH4反应性,多数是轻度苯丙酮尿症和轻度HPA患者。迄今,已明确50个突变位点与BH4反应性相关,常见位点如:c.782G>A(p.R261Q)、c.1241A>G(p.Y414C)、c.1066-11G>A、c.143T>C(p.L48S)等。国内外同行在BH4治疗苯丙酮尿症患者研究中均发现轻度苯丙酮尿症和轻度HPA患者对BH4的反应性较高,治疗效果明显
。基因型可以部分预测BH4反应性,但单独用基因型来预测个体的BH4反应性仍需谨慎。
BH4缺乏症根据临床表现可以分为三种类型:①中枢型(严重型):以脑脊液中神经递质代谢产物浓度低和严重的神经系统症状为特征;②周围型(温和型):脑脊液中神经递质代谢产物的水平正常;③短暂型:表现为一过性的新生儿HPA
。BH4缺乏症的严重程度受多种酶活性影响。目前共有495个BH4缺乏症的相关突变记录在BH4缺乏症及儿童神经递质缺乏症基因数据库(PNDdb,)中
PTS
、
QDPR
、
PCDB1
基因突变会导致HAP,而
GCH1
和
SPR
基因突变主要是导致多巴反应性肌张力障碍和神经递质缺乏症。
我国BH4缺乏症患者主要为PTPS缺乏症,约占96%,其次是DHPR缺乏症患者,约占2.4%
。对四川、郑州、上海等地区筛查数据的统计分析结果显示,PTPS缺陷症患者中基因型为复杂杂合型的占82.4%,纯合型占16.2%
。但在伊朗地区,PTPS缺乏症患者基因型为纯合型的比例高达94.7%,而复杂杂合型仅占5.3%
。Liu等
的研究表明,携带有c.166G>A突变的基因型例如c.[166G>A:73C>G]、c.[317C>T:166G>A]可能与温和型PTPS缺乏症有关,而携带有c.73C>G、c.155A>G、c.226C>T、c.259C>T、c.286G>A突变的基因型例如c.[155A>G:155A>G]、c.[259C>T:155A>G]、c.[259C>T:169_171delGTG]则与严重型PTPS缺乏症相关。
DHPR
基因有83种基因突变,其主要的发病人群位于中东和土耳其。在我国,DHPR缺乏症患者基因型为复杂杂合型的比例约为86%
。目前共有16例中国患者记录在BIODEF数据库()中,所有患者皆为中枢型BH4缺乏症。
HPA是我国遗传代谢病防控的典型,是研究基因型与表型关联的理想疾病模型,但其表型高度异质性的致病机制依然十分复杂。目前已经有超过100种突变通过生物化学研究确定了
PAH
致病作用,有利于更好地了解突变和PAH缺乏症之间的生物化学关系。但由于PAH常以四聚体的形式存在,且大多数PAH缺乏症患者带有不同突变的复合杂合子,两个不同突变的蛋白相互作用可能会导致与其作为单独的纯合突变时不同的BH4反应和不同的蛋白正向或负向作用,甚至会导致单体的错误折叠,从而使表型更严重。血脑屏障与中性大分子氨基酸也增加了表型的复杂性。基因信息与表型数据的结合将有助于医生更快地诊断疾病类型,制订个性化诊疗方案,HPA的防治也将取得更大进步。
Funding Statement
国家重点研发计划(2017YFC1001703);浙江省医药卫生重大科技项目(WKJ-ZJ-1704);浙江省卫生高层次人才培养工程(2016-6)
References
1.
中华医学会儿科学分会内分泌遗传代谢学组, 中华预防医学会出生缺陷预防与控制专业委员会新生儿筛查学组 高苯丙氨酸血症的诊治共识
中华儿科杂志
2014;
52
(6):420–425. doi: 10.3760/cma.j.issn.0578-1310.2014.06.005.
[中华医学会儿科学分会内分泌遗传代谢学组, 中华预防医学会出生缺陷预防与控制专业委员会新生儿筛查学组.高苯丙氨酸血症的诊治共识[J].中华儿科杂志, 2014, 52(6):420-425.]
[
CrossRef
]
[
Google Scholar
]
2.
叶 军, 邱 文娟, 韩 连书, et al. 新生儿筛查诊断的223例高苯丙氨酸血症的诊治及随访
中华预防医学杂志
2007;
41
(3):189–192. doi: 10.3760/j:issn:0253-9624.2007.03.009.
[叶军, 邱文娟, 韩连书, 等.新生儿筛查诊断的223例高苯丙氨酸血症的诊治及随访[J].中华预防医学杂志, 2007, 41(3):189-192.]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
3.
KOBE B, JENNINGS I G, HOUSE C M, et al. Structural basis of autoregulation of phenylalanine hydroxylase.
Nat Struct Biol.
1999;
6
(5):442–448. doi: 10.1038/8247.
[KOBE B, JENNINGS I G, HOUSE C M, et al. Structural basis of autoregulation of phenylalanine hydroxylase[J]. Nat Struct Biol, 1999, 6(5):442-448.]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
4.
ARTURO E C, GUPTA K, HÉROUX A, et al. First structure of full-length mammalian phenylalanine hydroxylase reveals the architecture of an autoinhibited tetramer.
Proc Natl Acad Sci U S A.
2016;
113
(9):2394–2399. doi: 10.1073/pnas.1516967113.
[ARTURO E C, GUPTA K, HÉROUX A, et al. First structure of full-length mammalian phenylalanine hydroxylase reveals the architecture of an autoinhibited tetramer[J]. Proc Natl Acad Sci U S A, 2016, 113(9):2394-2399.]
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
5.
GERSTING S W, KEMTER K F, STAUDIGL M, et al. Loss of function in phenylketonuria is caused by impaired molecular motions and conformational instability.
Am J Hum Genet.
2008;
83
(1):5–17. doi: 10.1016/j.ajhg.2008.05.013.
[GERSTING S W, KEMTER K F, STAUDIGL M, et al. Loss of function in phenylketonuria is caused by impaired molecular motions and conformational instability[J]. Am J Hum Genet, 2008, 83(1):5-17.]
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
6.
BLAU N, SHEN N, CARDUCCI C. Molecular genetics and diagnosis of phenylketonuria:state of the art.
Expert Rev Mol Diagn.
2014;
14
(6):655–671. doi: 10.1586/14737159.2014.923760.
[BLAU N, SHEN N, CARDUCCI C. Molecular genetics and diagnosis of phenylketonuria:state of the art[J]. Expert Rev Mol Diagn, 2014, 14(6):655-671.]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
8.
叶 军, 邱 文娟, 韩 连书, et al. 398例新生儿各型高苯丙氨酸血症的研究及26年诊治经验
中华围产医学杂志
2008;
11
(6):382–387. doi: 10.3760/cma.j.issn.1007-9408.2008.06.006.
[叶军, 邱文娟, 韩连书, 等.398例新生儿各型高苯丙氨酸血症的研究及26年诊治经验[J].中华围产医学杂志, 2008, 11(6):382-387.]
[
CrossRef
]
[
Google Scholar
]
9.
王 秀利, 禇 英, 顾 茂胜, et al. 2003年至2015年徐州市新生儿高苯丙氨酸血症筛查及治疗效果
中华围产医学杂志
2016;
19
(8):596–602. doi: 10.3760/cma.j.issn.1007-9408.2016.08.009.
[王秀利, 禇英, 顾茂胜, 等.2003年至2015年徐州市新生儿高苯丙氨酸血症筛查及治疗效果[J].中华围产医学杂志, 2016, 19(8):596-602.]
[
CrossRef
]
[
Google Scholar
]
10.
范 歆, 陈 少科, 林 彩娟, et al. 广西地区高苯丙氨酸血症发病情况分析
广西医科大学学报
2012;
29
(4):579–581. doi: 10.3969/j.issn.1005-930X.2012.04.034.
[范歆, 陈少科, 林彩娟, 等.广西地区高苯丙氨酸血症发病情况分析[J].广西医科大学学报, 2012, 29(4):579-581.]
[
CrossRef
]
[
Google Scholar
]
11.
孙 云, 蒋 涛, 张 菁菁, et al. 南京地区新生儿高苯丙氨酸血症筛查27年回顾
中华围产医学杂志
2013;
16
(6):357–361. doi: 10.3760/cma.j.issn.1007-9408.2013.06.009.
[孙云, 蒋涛, 张菁菁, 等.南京地区新生儿高苯丙氨酸血症筛查27年回顾[J].中华围产医学杂志, 2013, 16(6):357-361.]
[
CrossRef
]
[
Google Scholar
]
12.
ZHU T, YE J, HAN L, et al. The predictive value of genetic analyses in the diagnosis of tetrahydrobiopterin(BH4)-responsiveness in Chinese phenylalanine hydroxylase deficiency patients.
Sci Rep.
2017;
7
(1):6762. doi: 10.1038/s41598-017-06462-y.
[ZHU T, YE J, HAN L, et al.The predictive value of genetic analyses in the diagnosis of tetrahydrobiopterin(BH4)-responsiveness in Chinese phenylalanine hydroxylase deficiency patients[J]. Sci Rep, 2017, 7(1):6762.]
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
13.
JERVIS G A. Phenylpyruvic oligophrenia deficiency of phenylalanine-oxidizing system.
http://www.ncbi.nlm.nih.gov/pubmed/13047448
.
Proc Soc Exp Biol Med.
1953;
82
(3):514–515.
[JERVIS G A.Phenylpyruvic oligophrenia deficiency of phenylalanine-oxidizing system[J]. Proc Soc Exp Biol Med, 1953, 82(3):514-515.]
[
PubMed
]
[
Google Scholar
]
14.
WOO S L, LIDSKY A S, GVTTLER F, et al. Cloned human phenylalanine hydroxylase gene allows prenatal diagnosis and carrier detection of classical phenylketonuria.
Nature.
1983;
306
(5939):151–155. doi: 10.1038/306151a0.
[WOO S L, LIDSKY A S, GVTTLER F, et al. Cloned human phenylalanine hydroxylase gene allows prenatal diagnosis and carrier detection of classical phenylketonuria[J]. Nature, 1983, 306(5939):151-155.]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
15.
ROBSON K J, BEATTIE W, JAMES R J, et al. Sequence comparison of rat liver phenylalanine hydroxylase and its cDNA clones.
Biochemistry.
1984;
23
(24):5671–5675. doi: 10.1021/bi00319a001.
[ROBSON K J, BEATTIE W, JAMES R J, et al. Sequence comparison of rat liver phenylalanine hydroxylase and its cDNA clones[J]. Biochemistry, 1984, 23(24):5671-5675.]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
16.
DILELLA A G, MARVIT J, LIDSKY A S, et al. Tight linkage between a splicing mutation and a specific DNA haplotype in phenylketonuria.
Nature.
1986;
322
(6082):799–803. doi: 10.1038/322799a0.
[DILELLA A G, MARVIT J, LIDSKY A S, et al. Tight linkage between a splicing mutation and a specific DNA haplotype in phenylketonuria[J]. Nature, 1986, 322(6082):799-803.]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
17.
DILELLA A G, MARVIT J, BRAYTON K, et al. An amino-acid substitution involved in phenylketonuria is in linkage disequilibrium with DNA haplotype 2.
Nature.
1987;
327
(6120):333–336. doi: 10.1038/327333a0.
[DILELLA A G, MARVIT J, BRAYTON K, et al. An amino-acid substitution involved in phenylketonuria is in linkage disequilibrium with DNA haplotype 2[J]. Nature, 1987, 327(6120):333-336.]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
18.
KONECKI D S, WANG Y, TREFZ F K, et al. Structural characterization of the 5' regions of the human phenylalanine hydroxylase gene.
Biochemistry.
1992;
31
(35):8363–8368. doi: 10.1021/bi00150a033.
[KONECKI D S, WANG Y, TREFZ F K, et al. Structural characterization of the 5' regions of the human phenylalanine hydroxylase gene[J]. Biochemistry, 1992, 31(35):8363-8368.]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
19.
PAHvdb[DB/OL].[2018-02-20] .http://www.biopku.org/home/pah.asp
20.
LI N, JIA H, LIU Z, et al. Molecular characterisation of phenylketonuria in a Chinese mainland population using next-generation sequencing.
Sci Rep.
2015;
5
:15769. doi: 10.1038/srep15769.
[LI N, JIA H, LIU Z, et al. Molecular characterisation of phenylketonuria in a Chinese mainland population using next-generation sequencing[J]. Sci Rep, 2015, 5:15769.]
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
21.
LIU N, HUANG Q, LI Q, et al. Spectrum of PAH gene variants among a population of Han Chinese patients with phenylketonuria from northern China.
BMC Med Genet.
2017;
18
(1):108. doi: 10.1186/s12881-017-0467-7.
[LIU N, HUANG Q, LI Q, et al. Spectrum of PAH gene variants among a population of Han Chinese patients with phenylketonuria from northern China[J]. BMC Med Genet, 2017, 18(1):108.]
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
22.
CHIEN Y H, CHIANG S C, HUANG A, et al. Mutation spectrum in Taiwanese patients with phenylalanine hydroxylase deficiency and a founder effect for the R241C mutation.
http://d.old.wanfangdata.com.cn/NSTLQK/10.1002-humu.9215/
Hum Mutat.
2004;
23
(2):206.
[CHIEN Y H, CHIANG S C, HUANG A, et al. Mutation spectrum in Taiwanese patients with phenylalanine hydroxylase deficiency and a founder effect for the R241C mutation[J]. Hum Mutat, 2004, 23(2):206.]
[
PubMed
]
[
Google Scholar
]
23.
BIODEFdb[DB/OL].[2018-02-20] .http://www.biopku.org/home/biodef.asp
24.
LIU T T, CHIANG S H, WU S J, et al. Tetrahydrobiopterin-deficient hyperphenylalaninemia in the Chinese.
Clin Chim Acta.
2001;
313
(1-2):157–169. doi: 10.1016/S0009-8981(01)00669-6.
[LIU T T, CHIANG S H, WU S J, et al. Tetrahydrobiopterin-deficient hyperphenylalaninemia in the Chinese[J]. Clin Chim Acta, 2001, 313(1-2):157-169.]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
25.
YE J, YANG Y, YU W, et al. Demographics, diagnosis and treatment of 256 patients with tetrahydrobiopterin deficiency in mainland China:results of a retrospective, multicentre study.
J Inherit Metab Dis.
2013;
36
(5):893–901. doi: 10.1007/s10545-012-9550-6.
[YE J, YANG Y, YU W, et al. Demographics, diagnosis and treatment of 256 patients with tetrahydrobiopterin deficiency in mainland China:results of a retrospective, multicentre study[J]. J Inherit Metab Dis, 2013, 36(5):893-901]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
26.
HIEN Y H, CHIANG S C, HUANG A, et al. Treatment and outcome of Taiwanese patients with 6-pyruvoyltetrahydropterin synthase gene mutations.
J Inherit Metab Dis.
2001;
24
(8):815–823. doi: 10.1023/A:1013984022994.
[HIEN Y H, CHIANG S C, HUANG A, et al. Treatment and outcome of Taiwanese patients with 6-pyruvoyltetrahydropterin synthase gene mutations[J]. J Inherit Metab Dis, 2001, 24(8):815-823.]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
27.
LIU T T, CHANG Y H, CHIANG S H, et al. Identification of three novel 6-pyruvoyl-tetrahydropterin synthase gene mutations(226C > T, IVS3+1G > A, 116-119delTGTT) in Chinese hyperphenylalaninemia caused by tetrahydrobiopterin synthesis deficiency.
http://europepmc.org/abstract/MED/11517215
.
Hum Mutat.
2001;
18
(1):83.
[LIU T T, CHANG Y H, CHIANG S H, et al. Identification of three novel 6-pyruvoyl-tetrahydropterin synthase gene mutations(226C > T, IVS3+1G > A, 116-119delTGTT) in Chinese hyperphenylalaninemia caused by tetrahydrobiopterin synthesis deficiency[J]. Hum Mutat, 2001, 18(1):83.]
[
PubMed
]
[
Google Scholar
]
28.
HAN B, ZOU H, HAN B, et al. Diagnosis, treatment and follow-up of patients with tetrahydrobiopterin deficiency in Shandong province, China.
Brain Dev.
2015;
37
(6):592–598. doi: 10.1016/j.braindev.2014.09.008.
[HAN B, ZOU H, HAN B, et al. Diagnosis, treatment and follow-up of patients with tetrahydrobiopterin deficiency in Shandong province, China[J]. Brain Dev, 2015, 37(6):592-598.]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
29.
叶 军. 高苯丙氨酸血症的诊治及研究进展
临床儿科杂志
2010;
28
(2):197–200. doi: 10.3969/j.issn.1000-3606.2010.02.026.
[叶军.高苯丙氨酸血症的诊治及研究进展[J].临床儿科杂志, 2010, 28(2):197-200.]
[
CrossRef
]
[
Google Scholar
]
30.
CHIU Y H, CHANG Y C, CHANG Y H, et al. Mutation spectrum of and founder effects affecting the PTS gene in East Asian populations.
J Hum Genet.
2012;
57
(2):145–152. doi: 10.1038/jhg.2011.146.
[CHIU Y H, CHANG Y C, CHANG Y H, et al. Mutation spectrum of and founder effects affecting the PTS gene in East Asian populations[J]. J Hum Genet, 2012, 57(2):145-152.]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
31.
ANIKSTER Y, HAACK T B, VILBOUX T, et al. Biallelic mutations in DNAJC12 cause hyperphenylalaninemia, dystonia, and intellectual disability.
Am J Hum Genet.
2017;
100
(2):257–266. doi: 10.1016/j.ajhg.2017.01.002.
[ANIKSTER Y, HAACK T B, VILBOUX T, et al. Biallelic mutations in DNAJC12 cause hyperphenylalaninemia, dystonia, and intellectual disability[J]. Am J Hum Genet, 2017, 100(2):257-266.]
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
32.
VAN SPRONSEN F J, HIMMELREICH N, RÜFENACHT V, et al. Heterogeneous clinical spectrum of DNAJC12-deficient hyperphenylalaninemia:from attention deficit to severe dystonia and intellectual disability.
J Med Genet.
2017
[VAN SPRONSEN F J, HIMMELREICH N, RÜFENACHT V, et al. Heterogeneous clinical spectrum of DNAJC12-deficient hyperphenylalaninemia:from attention deficit to severe dystonia and intellectual disability[J]. J Med Genet, 2017.]
[
PubMed
]
[
Google Scholar
]
33.
BIOPKUdb[DB/OL].[2018-02-20] .http://www.biopku.org/home/biopku.asp
34.
SCRIVERC R. The PAH gene, phenylketonuria, and a paradigm shift.
Hum Mutat.
2007;
28
(9):831–845. doi: 10.1002/(ISSN)1098-1004.
[SCRIVERC R. The PAH gene, phenylketonuria, and a paradigm shift[J]. Hum Mutat, 2007, 28(9):831-845.]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
35.
BLAU N. Genetics of phenylketonuria:then and now.
Human Mutation.
2016;
37
(6):508–515. doi: 10.1002/humu.22980.
[BLAU N. Genetics of phenylketonuria:then and now[J]. Human Mutation, 2016, 37(6):508-515.]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
36.
WETTSTEIN S, UNDERHAUG J, PEREZ B, et al. Linking genotypes database with locus-specific database and genotype-phenotype correlation in phenylketonuria.
Eur J Hum Genet.
2015;
23
(3):302–309. doi: 10.1038/ejhg.2014.114.
[WETTSTEIN S, UNDERHAUG J, PEREZ B, et al. Linking genotypes database with locus-specific database and genotype-phenotype correlation in phenylketonuria[J]. Eur J Hum Genet, 2015, 23(3):302-309.]
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
37.
KURE S, HOU D C, OHURA T, et al. Tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency.
J Pediatr.
1999;
135
(3):375–378. doi: 10.1016/S0022-3476(99)70138-1.
[KURE S, HOU D C, OHURA T, et al. Tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency[J]. J Pediatr, 1999, 135(3):375-378.]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
38.
BERNEGGER C, BLAU N. High frequency of tetrahydrobiopterin-responsiveness among hyperphenylalaninemias:a study of 1, 919 patients observed from 1988 to 2002.
Mol Genet Metab.
2002;
77
(4):304–313. doi: 10.1016/S1096-7192(02)00171-3.
[BERNEGGER C, BLAU N.High frequency of tetrahydrobiopterin-responsiveness among hyperphenylalaninemias:a study of 1, 919 patients observed from 1988 to 2002[J]. Mol Genet Metab, 2002, 77(4):304-313.]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
39.
FIEGE B, BLAU N. Assessment of tetrahydrobiopterin (BH4) responsiveness in phenylketonuria.
J Pediatr.
2007;
150
(6):627–630. doi: 10.1016/j.jpeds.2007.02.017.
[FIEGE B, BLAU N. Assessment of tetrahydrobiopterin (BH4) responsiveness in phenylketonuria[J]. J Pediatr, 2007, 150(6):627-630.]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
41.
MITCHELL J J, WILCKEN B, ALEXANDER I, et al. Tetrahydrobiopterin-responsive phenylketonuria:the New South Wales experience.
http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ028655157/
Mol Genet Metab.
2005;
86
(Suppl 1):S81–85.
[MITCHELL J J, WILCKEN B, ALEXANDER I, et al. Tetrahydrobiopterin-responsive phenylketonuria:the New South Wales experience[J]. Mol Genet Metab, 2005, 86 Suppl 1:S81-85.]
[
PubMed
]
[
Google Scholar
]
43.
TRUNZO R, SANTACROCE R, SHEN N, et al.
In vitro
residual activity of phenylalanine hydroxylase variants and correlation with metabolic phenotypes in PKU
.
Gene.
2016;
594
(1):138–143. doi: 10.1016/j.gene.2016.09.015.
[TRUNZO R, SANTACROCE R, SHEN N, et al.
In vitro
residual activity of phenylalanine hydroxylase variants and correlation with metabolic phenotypes in PKU[J]. Gene, 2016, 594(1):138-143.
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
44.
叶 军, 邱 文娟, 韩 连书, et al. 四氢生物蝶呤反应性苯丙氨酸羟化酶缺乏症的临床和基因检测
中国实用儿科杂志
2005;
20
(12):718–720. doi: 10.3969/j.issn.1005-2224.2005.12.009.
[叶军, 邱文娟, 韩连书, 等.四氢生物蝶呤反应性苯丙氨酸羟化酶缺乏症的临床和基因检测[J].中国实用儿科杂志, 2005, 20(12):718-720.]
[
CrossRef
]
[
Google Scholar
]
45.
TAO J, LI N, JIA H, et al. Correlation between genotype and the tetrahydrobiopterin-responsive phenotype in Chinese patients with phenylketonuria.
Pediatr Res.
2015;
78
(6):691–699. doi: 10.1038/pr.2015.167.
[TAO J, LI N, JIA H, et al. Correlation between genotype and the tetrahydrobiopterin-responsive phenotype in Chinese patients with phenylketonuria[J]. Pediatr Res, 2015, 78(6):691-699.]
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
46.
SHINTAKU H, KURE S, OHURA T, et al. Long-term treatment and diagnosis of tetrahydrobiopterin-responsive hyperphenylalaninemia with a mutant phenylalanine hydroxylase gene.
Pediatr Res.
2004;
55
(3):425–430. doi: 10.1203/01.PDR.0000111283.91564.7E.
[SHINTAKU H, KURE S, OHURA T, et al. Long-term treatment and diagnosis of tetrahydrobiopterin-responsive hyperphenylalaninemia with a mutant phenylalanine hydroxylase gene[J]. Pediatr Res, 2004, 55(3):425-430.]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
47.
杨 凌, 张 知新, 叶 军, et al. 四氢生物蝶呤反应性苯丙氨酸羟化酶缺乏症在我国南北地区差异的临床初步研究
中华医学遗传学杂志
2007;
24
(3):310–313. doi: 10.3760/j.issn:1003-9406.2007.03.016.
[杨凌, 张知新, 叶军, 等.四氢生物蝶呤反应性苯丙氨酸羟化酶缺乏症在我国南北地区差异的临床初步研究[J].中华医学遗传学杂志, 2007, 24(3):310-313.]
[
CrossRef
]
[
Google Scholar
]
48.
沈 明, 喻 唯民, 杨 凌, et al. 四氢生物蝶呤缺乏症的临床研究
中日友好医院学报
2002;
16
(1):8–10. doi: 10.3969/j.issn.1001-0025.2002.01.002.
[沈明, 喻唯民, 杨凌, 等.四氢生物蝶呤缺乏症的临床研究[J].中日友好医院学报, 2002, 16(1):8-10.]
[
CrossRef
]
[
Google Scholar
]
49.
PNDdb[DB/OL].[2018-02-20] .http://www.biopku.org/home/pnddb.asp
50.
刘 宁, 赵 德华, 李 晓乐, et al. PTPS基因检测在6丙酮酰四氢蝶呤合成酶缺乏症出生后诊断和产前诊断中的应用
中华妇产科杂志
2016;
51
(12):890–894. doi: 10.3760/cma.j.issn.0529-567x.2016.12.003.
[刘宁, 赵德华, 李晓乐, 等.PTPS基因检测在6丙酮酰四氢蝶呤合成酶缺乏症出生后诊断和产前诊断中的应用[J].中华妇产科杂志, 2016, 51(12):890-894.]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
51.
LI N, YU P, RAO B, et al. Molecular genetics of tetrahydrobiopterin deficiency in Chinese patients.
J Pediatr Endocrinol Metab.
2018;
31
(8):911–916. doi: 10.1515/jpem-2018-0037.
[LI N, YU P, RAO B, et al. Molecular genetics of tetrahydrobiopterin deficiency in Chinese patients[J]. J Pediatr Endocrinol Metab, 2018, 31(8):911-916.]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
52.
叶军, 陈瑞冠.6-丙酮酰四氢蝶呤合成酶(PTPS)缺乏病9例分析[C]//
第一届全国新生儿疾病筛查学术交流会论文集
.贵阳: 中华预防医学会儿童保健分会新生儿筛查学组, 2007: 51.
53.
叶 军, 刘 晓青, 黄 晓东, et al. 中国南方四氢生物蝶呤缺乏症筛查、临床及基因突变的系列研究
中华医学遗传学杂志
2001;
18
(2):92–95. doi: 10.3760/j.issn:1003-9406.2001.02.003.
[叶军, 刘晓青, 黄晓东, 等.中国南方四氢生物蝶呤缺乏症筛查、临床及基因突变的系列研究[J].中华医学遗传学杂志, 2001, 18(2):92-95.]
[
CrossRef
]
[
Google Scholar
]
54.
KHATAMI S, DEHNABEH S R, ZEINALI S, et al. Four years of diagnostic challenges with tetrahydrobiopterin deficiencies in iranian patients.
https://www.ncbi.nlm.nih.gov/pubmed/27246466
.
JIMD Rep.
2017;
32
:7–14.
[KHATAMI S, DEHNABEH S R, ZEINALI S, et al. Four years of diagnostic challenges with tetrahydrobiopterin deficiencies in iranian patients[J]. JIMD Rep, 2017, 32:7-14.]
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
55.
LIU T T, HSIAO K J, LU S F, et al. Mutation analysis of the 6-pyruvoyl-tetrahydropterin synthase gene in Chinese hyperphenylalaninemia caused by tetrahydrobiopterin synthesis deficiency.
Hum Mutat.
1998;
11
(1):76–83. doi: 10.1002/(ISSN)1098-1004.
[LIU T T, HSIAO K J, LU S F, et al. Mutation analysis of the 6-pyruvoyl-tetrahydropterin synthase gene in Chinese hyperphenylalaninemia caused by tetrahydrobiopterin synthesis deficiency[J]. Hum Mutat, 1998, 11(1):76-83.]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Articles from
Journal of Zhejiang University (Medical Sciences)
are provided here courtesy of
Zhejiang University Press