添加链接
link之家
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接

Abstract: A volume formula of the Legendre ellipsoid of convex body is obtained by using two different methods. Also, the volume formula of the Minkowski sum of finite segments is established by using mathematical induction. As applications, the Legendre ellipsoids of several specific convex bodies are calculated and depicted with Matlab.

Key words: Binet ellipsoid, inertia matrix;Matlab, Legendre ellipsoid, Minkowski summation [1] Schneider R. Convex bodies: the Brunn-Minkowski theory [M]. Cambridge: Cambridge University Press, 1993: 43-45.[2] Milman V D, Schechtman G. Asymptotic theory of finite dimensional normed spaces [M]. Berlin: Springer-Verlag, 1986: 156.[3] Milman V D, Pajor A. Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space [J]. Geometric Aspects of Functional Analysis, 1989, 1376: 64-104.[4] Lutwak E, Yang D, Zhang G. A new ellipsoid associated with convex bodies [J]. Duke Math J, 2000, 104: 375-390.[5] Lutwak E, Yang D, Zhang G. Lp John ellipsoids [J]. Proc London Math Soc, 2005, 90(3):497-520.[6] Petty C M. Surface area of a convex body under a ffine transformations [J]. Proc Amer Math Soc, 1961, 12: 824-828.[7] Milman V D, Pajor A. Cas limites des in´egalit´es du type Khinchine et applications g´eom´etriques [J]. CR Acad Sci Paris, 1989, 308: 91-96.[8] Lindenstrauss J, Milman D. Local theory of normed spaces and convexity [M/OL]. Amsterdam:North-Holland, 1993 [2014-12-01]. http://citeseerx.ist.psu.edu/showciting?cid=1967612.[9] Leichtwei K. Affine geometry of convex bodies [M]. Heidelberg: J A Barth, 1998.

© 2019 上海大学学报(自然科学版)编辑部
办公地址:上海市宝山区南陈路333号上海大学东区3#楼221室电话:021-66135508  传真:021-66132736  E-mail: xuebao@mail.shu.edu.cn
通信地址:上海市上大路99号上海大学126信箱 邮编:200444
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn