添加链接
link之家
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
I expect to be using Moor Instrument’s technology for many years to come! Faisel Khan, PhD
Ninewells Hospital & Medical School

It goes without saying that the company's imaging technology itself is superb! Gourav Banerjee
Leeds Beckett University

Laser Doppler Imager is a standard accurate method we now use in our cerebral blood flow and brain perfusion in our laboratory. Momoh A. Yakubu, PhD
Texas Southern University

We have found Moor equipment to be extremely dependable and innovative. Dean L. Kellogg, Jr., MD, Ph.D
University of Texas Health Science Center

Moor Instruments have consistently provided excellent help and support for my research. Kim Gooding, PhD
University of Exeter Medical School

We can't recommend Moor instruments highly enough. The technology is at the cutting edge and the support second to none. Paul Sumners, PhD
London South Bank University

In a nutshell, moorFLPI-2 is the most user-friendly system for studying cerebral blood flow regulation in rodents. Chia-Yi (Alex) Kuan, MD, PhD
Emory University School of Medicine

The moorLDI2-HIR is suitable for a wide range of pre-clinical research investigations, more typically where smaller areas are under investigation. The system features unique focused optics to provide 50 micron pixel size and 512 x 512 pixel resolution for high resolution blood flow images. The scan areas range from just 2.5cm x 2.5cm up to 25cm x 25cm with scan times typically less than 5 minutes. Use of a focussed laser provides a deeper measurement depth, optimal for angiogenesis studies such as hind limb ischemia and tumour modelling and pre-clinical cerebral blood flow imaging. Highly refined image measurement and analysis software allows for flexibility in measurement set up and comprehensive analysis functions. The moorLDI2-HIR features a colour photo image of the scanned area and automatic distance measurement, making the positioning and comparison of images easier.

The system is in routine use in numerous laboratories and clinics globally and employs unique, optical design and signal processing in order to generate the highest resolution and clearest images of its class. Laser Doppler imaging (LDI) is often compared to laser speckle imaging and whilst there are some similarities, both techniques offer unique advantages. LDI (and moorLDI2-HIR in particular) generally offers deeper penetration enabling enhanced visualisation of small vessels below the tissue surface, perfect for pre-clinical studies. For certain applications these features are critical.

Other features and benefits include;

  • Non contact measurement – painless for patient, aids infection control, no chemical tracers or dyes needed.
  • Daylight operation – use in most lab, clinic or theatre settings.
  • Flexible scan sizes – from just 2.5cm x 2.5 cm up to 25cm x 25cm.
  • High spatial resolution – to catch the finest detail to 50 micron.
  • Single and Repeat imaging modes – compare flow from region to region within the same scan and scan the same region repeatedly to assess changes over time.
  • Advanced Windows compatible software – to ease setup and scanning. Post Measurement processing functions to make the most of your data.
  • Protocol control – set the imager to control flexible tissue heating, pressure cuff control and transdermal drug delivery routines – reproducible, precise and reliable.
  • Digital Trigger In/ Out – to synchronise with external devices.
  • Digital Signal Processing and high quality optics – providing the highest sensitivity to changes in blood flow and superb reliability.
  • Choice of stands – for benchtop use.
  • NOTE: If you are interested in clinical research and larger scan areas please consider the moorLDI2-IR large area imager or the moorFLPI-2 laser speckle imager.

    The majority of studies using high resolution laser Doppler have investigated vascular responses with the hind limb ischemia model (ligation of the femoral artery), abbreviated to HLI. The ‘Organ’ category includes Brain, Lung, Skin, and Bone.

    HLI Angiogenesis
    HLI Atherosclerosis & Inflammation
    HLI Cells & Genes
    Organ (inc Brain, Lung, Skin & Bone)
    Wound Healing & Flap Surgery

    Please note that the latest version of moorLDI software offers improved pixel resolution – now 512 x 512 up from 256 x 256.

    To find out more, please send us a message .

    If you are a current moorLDI2-HIR user and your work is missing or miss-categorised, please send us a copy and / or let us know the most appropriate category.

    England, C.G., Im, H-J., Feng, L., Chen, F., Graves, S.A., Hernandez, R., Orbay, H., Xu, C., Cho, S.Y., Nickles, R.J., Liu, Z., Lee, D.S., Cai, W., (2016).
    Re-assessing the enhanced permeability and retention effect in peripheral arterial disease using radiolabeled long circulating nanoparticles.
    Biomaterials. 100:101-9.

    Haywood, N.J., Slater, T.A., Drozd, M., Warmke, N., Matthews, C., Cordell, P.A., Smith, J., Rainford, J., Cheema, H., Maher, C., Bridge, K.I., Yuldasheva, N.Y., Cubbon, R.M., Kearney, M.T., Wheatcroft, S.B., (2020).
    IGFBP-1 in Cardiometabolic Pathophysiology—Insights From Loss-of-Function and Gain-of-Function Studies in Male Mice.
    Journal of the Endocrine Society, Volume 4, Issue 1, January 2020, bvz006.

    Im, H-J., England, C. G., Feng, L., Graves, S. A., Hernandez, R., Nickles, R. J., Liu, Z., Lee, D. S., Cho, S. Y., and Cai, W. (2016).
    Accelerated Blood Clearance Phenomenon Reduces the Passive Targeting of PEGylated Nanoparticles in Peripheral Arterial Disease.
    ACS Appl. Mater. Interfaces, 8 (28), pp.17955–17963.
    Weblink

    Saito, I., Hasegawa, T., Ueha, T., Takeda, D., Iwata, E., Arimoto, S., Sakakibara, A., Akashi, M., Sakakibara, S., Sakai, Y., Terashi, H., Komori, T., (2018).
    Effect of local application of transcutaneous carbon dioxide on survival of random-pattern skin flaps.
    Plast Reconstr Aesthet Surg. 71(11):1644-1651.

    Shi, Y., Fan, S., Wang, D., Huyan, T., Chen, J., Chen, J., Su, J., Li, X., Wang, Z., Xie, S., Yun, C., Li, X., Tie, L., (2018).
    FOXO1 inhibition potentiates endothelial angiogenic functions in diabetes via suppression of ROCK1/Drp1-mediated mitochondrial fission.
    Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease Volume 1864, Issue 7, July 2018, Pages 2481-2494.

    Besnier, M., Gasparino, S., Vono, R., Sangalli, E., Facoetti, A., Bollati, V., Cantone, L., Zaccagnini, G., Maimone, B., Fuschi, P., Da Silva, D., Schiavulli, M., Aday, S., Caputo, M., Madeddu, P., Emanueli, C., Martelli, F., & Spinetti, G., (2018).
    MicroRNA-210 enhances the therapeutic potential of bone marrow-derived circulating proangiogenic cells in the setting of limb ischemia.
    Molecular Therapy, 26(7), 1694-1705.
    Weblink

    Lee, J.H., Kim, S.W., Ji, S.T., Kim, Y.J., Jang, W.B., Oh, J-W., Kim, J., Yoo, S.Y., Beak, S.H., & Kwon, S-M., (2017).
    Engineered M13 Nanofiber Accelerates Ischemic Neovascularization by Enhancing Endothelial Progenitor Cells.
    Tissue Engineering and Regenerative Medicine volume 14, pages787–802.
    Weblink

    Lee. N.G., Jeung, I.C., Heo, S.C., Song, J., Kim, W., Hwang, B., Kwon, M-G., Kim, Y-G., Lee, J., Park, J-G., Shin, M-G., Cho, Y-L., Son, M-Y., Bae, K-H., Lee, S-H., Kim, J.H., Min, J-K., (2019).
    Ischemia‐induced Netrin‐4 promotes neovascularization through endothelial progenitor cell activation via Unc‐5 Netrin receptor B.
    1. FASEB J. 34(1):1231-1246.

    Makarevich, P.I., Boldyreva, M.A., Gluhanyuk, E.V., Efimenko, A.Y., Dergilev, K.V., Shevchenko, E.K., Sharonov, G.V., Gallinger, J.O., Rodina, P.A., Sarkisyan, S.S., Hu, Y-C., Parfyonova, Y.V., (2015).
    Enhanced angiogenesis in ischemic skeletal muscle after transplantation of cell sheets from baculovirus-transduced adiposederived stromal cells expressing VEGF165.
    Stem Cell Res Ther. 26;6:204.

    Nossent, A.Y., Bastiaansen, A.J.N.M., Peters, E.A.B., de Vries, M.R., Aref, Z., Welten, S.M.J., de Jager, S.C.A., van der Pouw Kraan, T.C.T.M., Quax, P.H.A., (2017).
    CCR7-CCL19/CCL21 Axis is Essential for Effective Arteriogenesis in a Murine Model of Hindlimb Ischemia.
    J Am Heart Assoc. 8;6(3):e005281.

    Shevchenko , E . K., Makarevich , P . I., Tsokolaeva , Z . I., Boldyreva , M., Sysoeva , V . Y., Tkachuk , V., and Parfyonova , Y . V, 2013.
    Transplantation of modified human adipose derived stromal cells expressing VEGF165 results in more efficient angiogenic response in ischemic skeletal muscle.
    Journal of translational medicine, 11(1), p.138.
    Weblink

    Suzuki , H., Shibata , R., Kito , T., Ishii , M., Li , P., Yoshikai , T., Nishio , N., Ito , S., Numaguchi , Y., Yamashita , J . K., Murohara , T., and Isobe , K., 2010.
    Therapeutic angiogenesis by transplantation of induced pluripotent stem cell-derived Flk-1 positive cells.
    BMC cell biology, 11, p.72.
    Weblink

    Zhang, Y., Wang, Y., Shao, L., Pan, X., Liang, C., Liu, B., Zhang, Y., Xie, W., Yan, B., Liu, F., Yu, X-Y., and Li, Y., (2020).
    Knockout of beta‐2 microglobulin reduces stem cell‐induced immune rejection and enhances ischaemic hindlimb repair via exosome/miR‐24/Bim pathway.
    J Cell Mol Med. 24(1): 695–710.

    Fonseca, R.C., Bassi, G.S., Brito, C.C., Rosa, L.B., David, B.A., Araújo, A.M., Nóbrega, N., Diniz, A.B., Jesus, I.C.G., Barcelos, L.S., Fontes, M.A.P., Bonaventura, D., Kanashiro, A., Cunha, T.M., Guatimosim, S., Cardoso, V.N., Fernandes, S.O.A., Menezes, G.B., de Lartigue, G., Oliveira, A.G., (2019).
    Vagus nerve regulates the phagocytic and secretory activity of resident macrophages in the liver.
    Brain Behav Immun. 81:444-454
    Weblink

    Meakin, P.J., Coull, B.M., Tuharska, Z., McCaffery, C., Akoumianakis, I., Antoniades, C., Brown, J., Griffin, K.J., Platt, F., Ozber, C.H., Yuldasheva, N.Y., Makava, N., Skromna, A., Prescott, A., McNeilly, A.D., Siddiqui, M., Palmer, C.N.A., Khan, F., and Ashford, M.L.J., (2020).
    Elevated circulating amyloid concentrations in obesity and diabetes promote vascular dysfunction.
    J Clin Invest. 130(8):4104–4117.
    Weblink

    Yan, T., Zhang, T., Mua, W., Qi, Y., Guo, S., Hu, N., Zhao, W., Zhang, S., Wang, Q., Shi, L., Liu, L., (2020).
    Ionizing radiation induces BH4 deficiency by downregulating GTP-cyclohydrolase 1, a novel target for preventing and treating radiation enteritis.
    Biochemical Pharmacology Volume 180, 114102.
    Weblink

    Sönmez , T . T., Vinogradov , A., Zor , F., Kweider , N., Lippross , S., Liehn , E . A., Naziroglu , M., Hölzle , F., Wruck , C., Pufe , T., and Tohidnezhad , M., (2013.).
    The effect of platelet rich plasma on angiogenesis in ischemic flaps in VEGFR2-luc mice.
    Biomaterials, 34(11), pp.2674–82.
    Weblink

    Wu, H., Chen, H., Zheng, Z., Li, J., Ding, J., Huang, Z., Jia, C., Shen, Z., Bao, G., Wu, L., Mamun, A.A., Xu, H., Gao, W. & Zhou, K. (2019).
    Trehalose promotes the survival of random-pattern skin flaps by TFEB mediated autophagy enhancement.
    Cell Death & Disease volume 10, Article number: 483.
    Weblink

    Moor Instruments are committed to product development. We reserve the right to change the specifications below without notice.

    The moorLDI2-HIR is a class IIa device under EC directive 93/42/EEC 14 June 1993 Medical Device Directive.

    LASER SOURCE

    Infra-Red Laser Diode: 785nm nominal, maximum power 2.5mW
    Ocular Hazard Distance 20m.
    Class 3R per IEC 60825-1:2014. Complies with FDA performance standards for laser products except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007.
    Visible Laser Diode (target beam for infrared systems): 660nm nominal, maximum power 0.25mW
    All measurements include cumulative measurement uncertainties and expected increases after manufacture.

    PROTECTIVE EYEWEAR REQUIREMENTS

    The nominal ocular hazard distance is 20 metres.
    Operator protection: OD4, 770-850nm.
    Patient protection: OD4, 630-670nm and 770-850nm.

    ENVIRONMENT CONDITIONS

    Temperature: 15°C to 30°C
    Humidity: 20% to 80%
    Atmospheric pressure: within the range 86.0 kPa to 106.0 kPa (645mmHg to 795mmHg).
    Flammable Anaesthetics: the system must not be operated in the presence of flammable anaesthetics.

    BANDWIDTH

    Scan rate dependent: low frequency cut-off (3db) 20Hz, 100Hz or 250Hz .
    Selectable upper cut-off frequency (0.1db) 3KHz, 15KHz or 22.5KHz.

    Default Bandwidth in Bold.

    RANGE AND SCAN AREA

    At 20cm distance, Normal Area = 2.5cm x 2.5cm; Large Area = 5cm x 5cm
    At 30cm distance , Normal Area = 3.4cm x 3.4cm; Large Area = 6.8cm x 6.8cm

    MEASUREMENTS

    FLUX Accuracy: ± 10% relative to Moor Instruments moorLDI2 standard’
    Precision: ± 3% of measurement value
    Range: 0-5000PU

    CONC Accuracy: ± 10%
    Precision: ± 5% of measurement value
    Range: 0-5000AU

    DC Accuracy: ± 10%
    Precision: ± 3%
    Range: 0-5000AU

    ELECTRICAL SAFETY CLASSIFICATION

    Type of protection against electric shock – Class I.
    Degree of protection against electric shock – Non-patient contact, no applied part.
    Degree of protection against ingress of liquid – IPXO (not protected).
    Degree of protection against flammable anaesthetics – equipment not suitable for use in the presence of a flammable anaesthetic mixture with air or with oxygen or nitrous oxide.
    Mode of operation – continuous.

    GENERAL

    Universal voltage switch mode power supply, 100-230V, 50-60Hz, 50VA power consumption
    Scan Head: Dimensions W H D mm 426 x 244 x 300: Weight 9kgs.
    Operating temperature: 15-30°C.

    关于我们

    摩尔仪器公司建立于1987年,是血流血氧监测与成像系统集设计、制造和销售于一体的全球领导者,专注于微血管中的血流血氧的评估。携手科研人员、临床工作者和制造商,为您的问题找到答案。

    获取更多烧伤类产品详情,请访问 www.moorclinical.com

    联系我们

    Gene&I Scientific. Ltd.
    1701, block C4, BeiJieJiaYuan, Shahe
    Changping, Beijing
    102206
    CHINA

    电话: +86 10-82893047
    传真: +86 10-62976067
    Website: www.gene-and-i.com
    邮件咨询: gene_and_i@126.com
    售后服务邮箱: gene_and_i@126.com