添加链接
link之家
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
相关文章推荐
安静的香烟  ·  python - Failed to ...·  2 年前    · 
魁梧的咖啡豆  ·  Spark: ...·  2 年前    · 

Nociceptive Actions of NGF Signaling

Effects of NGF on Inflammatory Cells and Mediators

There is evidence that NGF modulates nociception, in part, by influencing the actions of inflammatory cells and mediators. It has been shown that rodent mast cells produce and store NGF in granules until degranulation and NGF mRNA has been detected in a human mast cell line. 108 , 109 Moreover, cultured media from this mast cell line is able to induce neurite outgrowth in cultured chick embryonic sensory neurons, suggesting that NGF is secreted from these cells. 109 NGF has also been found to be present in, and released from, human CD14+ T cell clones and human monocytes. 110 , 111

NGF has been shown to increase the release of mediators from inflammatory cells ( Figure 2 ). These mediators, such as bradykinin, histamine, ATP, serotonin, and protons, are released during inflammation or injury from ruptured cells or from infiltrating inflammatory cells and are capable of activating receptors and ion channels found on the peripheral nociceptor terminal, leading to neuronal depolarization and sensitization that manifests as pain hypersensitivity. 112 For example, exogenous IL-1β causes mechanical and thermal hyperalgesia (measured as an increased nociceptive reflex) in rodents, and histamine has been shown to mediate pain-related behaviors in a rodent model of interstitial cystitis. 113 , 114 Further, serotonin administered to healthy human volunteers causes mechanical hyperalgesia and stimulates calcium influx into cultured rat sensory neurons, an indication of cell excitability. 115 , 116 Finally, bradykinin treatment causes mechanical hyperalgesia in rats and Protein Kinase C (PKC) signaling-dependent sensitization of the transient receptor potential cation channel subfamily V member 1 (TRPV1), when isolated via patch-clamp, which has a known role in nociception and noxious heat sensation. 117 , 118

Figure 2
Nociceptive effects of NGF on inflammatory cells. NGF binds TrkA receptors on inflammatory cells. The resulting NGF/TrkA signaling increases the release of a variety of inflammatory mediators such as serotonin, histamine, and NGF itself, which are known ...

NGF can trigger the release of histamine and leukotriene from human basophils, serotonin and histamine from rodent mast cells, and histamine and tryptase from a human mast cell line. 119 123 However, NGF administration did not activate mast cells in a separate rodent study, and there is some evidence that rodent mast cells do not express NGF receptors. 109 , 124 Though the contribution of mast cells to NGF signaling in humans is not clear, human mast cells express TrkA receptors and, thus, species differences must be considered when discussing the influence of NGF on inflammatory cells. 109 Similar to effects seen in mast cells, isolated murine peritoneal macrophages exposed to NGF increase the production of interleukin 1β (IL-1β). 125 This may occur through TrkA activation as TrkA expression, but not p75NTR expression, was observed in these cells. 125 The effects that NGF-mediated release of inflammatory mediators have will depend on the tissue. For example, histamine evokes the sensation of itch when released in isolation in superficial skin and mucous membranes, but causes burning pain when applied to deep somatic tissues. 126 , 127

In addition to affecting cytokine release, NGF can also affect the actions of inflammatory mediators. For example, NGF can potentiate the sensitivity of rat DRG neurons to bradykinin. 128 On the other hand, inflammatory mediators can influence the levels and effects of NGF. Evidence suggests that IL-1β contributes to increased NGF levels in cultured sciatic nerve explants, and inhibiting bradykinin-1 receptor activity blocks NGF-induced thermal hyperalgesia in rodents. 114 , 129 , 130 Thus, there may be instances of positive feedback loops in vivo in which NGF stimulates the release and actions of inflammatory mediators that in turn stimulate increased synthesis and/or release of NGF. However, the role, if any, such a feedback loop plays in the generation or maintenance of chronic pain is not known.

NGF Effects on Nociceptive Ion Channels, Receptors, and Peptides

In addition to enhancing the release of inflammatory mediators that alter sensory neuron excitability, NGF signaling itself also has effects on the activity of nociceptive ion channels and receptors that contribute to nociceptor sensitization ( Table 2 ). The changes may be due either to direct, immediate effects on ion channel/receptor activity at the cell membrane and/or through longer-term effects such as enhanced gene transcription that leads to increased numbers of ion channels/receptors at the cell surface ( Figure 3 ). Philos Trans R Soc Lond B Biol Sci . 1996; 351 ( 1338 ):389–394. [ PubMed ] [ Google Scholar ]

29. Fitzgerald M. Developmental biology of inflammatory pain . Br J Anaesth . 1995; 75 ( 2 ):177–185. doi:10.1093/bja/75.2.177 [ PubMed ] [ CrossRef ] [ Google Scholar ]
30. Crowley C, Spencer SD, Nishimura MC, et al. Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons . Cell . 1994; 76 ( 6 ):1001–1011. doi:10.1016/0092-8674(94)90378-6 [ PubMed ] [ CrossRef ] [ Google Scholar ]
31. Smeyne RJ, Klein R, Schnapp A, et al. Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene . Nature . 1994; 368 ( 6468 ):246–249. doi:10.1038/368246a0 [ PubMed ] [ CrossRef ] [ Google Scholar ]
32. Einarsdottir E, Carlsson A, Minde J, et al. A mutation in the nerve growth factor beta gene (NGFB) causes loss of pain perception . Hum Mol Genet . 2004; 13 ( 8 ):799–805. doi:10.1093/hmg/ddh096 [ PubMed ] [ CrossRef ] [ Google Scholar ]
33. Carvalho OP, Thornton GK, Hertecant J, et al. A novel NGF mutation clarifies the molecular mechanism and extends the phenotypic spectrum of the HSAN5 neuropathy . J Med Genet . 2011; 48 ( 2 ):131–135. doi:10.1136/jmg.2010.081455 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
34. Larsson E, Kuma R, Norberg A, Minde J, Holmberg M. Nerve growth factor R221W responsible for insensitivity to pain is defectively processed and accumulates as proNGF . Neurobiol Dis . 2009; 33 ( 2 ):221–228. doi:10.1016/j.nbd.2008.10.012 [ PubMed ] [ CrossRef ] [ Google Scholar ]
35. Capsoni S, Covaceuszach S, Marinelli S, et al. Taking pain out of NGF: a “painless” NGF mutant, linked to hereditary sensory autonomic neuropathy type V, with full neurotrophic activity . PLoS One . 2011; 6 ( 2 ):e17321. doi:10.1371/journal.pone.0017321 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
36. Indo Y, Tsuruta M, Hayashida Y, et al. Mutations in the TRKA/NGF receptor gene in patients with congenital insensitivity to pain with anhidrosis . Nat Genet . 1996; 13 ( 4 ):485–488. doi:10.1038/ng0896-485 [ PubMed ] [ CrossRef ] [ Google Scholar ]
37. Indo Y. Molecular basis of congenital insensitivity to pain with anhidrosis (CIPA): mutations and polymorphisms in TRKA (NTRK1) gene encoding the receptor tyrosine kinase for nerve growth factor . Hum Mutat . 2001; 18 ( 6 ):462–471. doi:10.1002/humu.1224 [ PubMed ] [ CrossRef ] [ Google Scholar ]
38. Lewin GR, Ritter AM, Mendell LM. Nerve growth factor-induced hyperalgesia in the neonatal and adult rat . J Neurosci . 1993; 13 ( 5 ):2136–2148. doi:10.1523/JNEUROSCI.13-05-02136.1993 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
39. Zhu W, Galoyan SM, Petruska JC, Oxford GS, Mendell LM. A developmental switch in acute sensitization of small dorsal root ganglion (DRG) neurons to capsaicin or noxious heating by NGF . J Neurophysiol . 2004; 92 ( 5 ):3148–3152. doi:10.1152/jn.00356.2004 [ PubMed ] [ CrossRef ] [ Google Scholar ]
40. Kemp SWP, Webb AA, Dhaliwal S, Syed S, Walsh SK, Midha R. Dose and duration of nerve growth factor (NGF) administration determine the extent of behavioral recovery following peripheral nerve injury in the rat . Exp Neurol . 2011; 229 ( 2 ):460–470. doi:10.1016/j.expneurol.2011.03.017 [ PubMed ] [ CrossRef ] [ Google Scholar ]
41. Hui L, Yuan J, Ren Z, Jiang X. Nerve growth factor reduces apoptotic cell death in rat facial motor neurons after facial nerve injury . Neurosciences (Riyadh) . 2015; 20 ( 1 ):65–68. [ PMC free article ] [ PubMed ] [ Google Scholar ]
42. Orike N, Thrasivoulou C, Wrigley A, Cowen T. Differential regulation of survival and growth in adult sympathetic neurons: an in vitro study of neurotrophin responsiveness . J Neurobiol . 2001; 47 ( 4 ):295–305. doi:10.1002/neu.1036 [ PubMed ] [ CrossRef ] [ Google Scholar ]
43. Jones MG, Munson JB, Thompson SWN. A role for nerve growth factor in sympathetic sprouting in rat dorsal root ganglia . Pain . 1999; 79 ( 1 ):21–29. doi:10.1016/S0304-3959(98)00142-0 [ PubMed ] [ CrossRef ] [ Google Scholar ]
44. Heumann R, Lindholm D, Bandtlow C, et al. Differential regulation of mRNA encoding nerve growth factor and its receptor in rat sciatic nerve during development, degeneration, and regeneration: role of macrophages . Proc Natl Acad Sci U S A . 1987; 84 ( 23 ):8735–8739. doi:10.1073/pnas.84.23.8735 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
45. Calamandrei G, Alleva E, Cirulli F, et al. Serum NGF levels in children and adolescents with either Williams syndrome or Down syndrome . Dev Med Child Neurol . 2000; 42 ( 11 ):746–750. doi:10.1017/S0012162200001389 [ PubMed ] [ CrossRef ] [ Google Scholar ]
46. Woolf CJ, Safieh-Garabedian B, Ma QP, Crilly P, Winter J. Nerve growth factor contributes to the generation of inflammatory sensory hypersensitivity . Neuroscience . 1994; 62 ( 2 ):327–331. doi:10.1016/0306-4522(94)90366-2 [ PubMed ] [ CrossRef ] [ Google Scholar ]
47. Donnerer J, Schuligoi R, Stein C. Increased content and transport of substance P and calcitonin gene-related peptide in sensory nerves innervating inflamed tissue: evidence for a regulatory function of nerve growth factor in vivo . Neuroscience . 1992; 49 ( 3 ):693–698. [ PubMed ] [ Google Scholar ]
48. Grills BL, Schuijers JA. Immunohistochemical localization of nerve growth factor in fractured and unfractured rat bone . Acta Orthop Scand . 1998; 69 ( 4 ):415–419. doi:10.3109/17453679808999059 [ PubMed ] [ CrossRef ] [ Google Scholar ]
49. Longo G, Osikowicz M, Ribeiro-da-Silva A. Sympathetic fiber sprouting in inflamed joints and adjacent skin contributes to pain-related behavior in arthritis . J Neurosci . 2013; 33 ( 24 ):10066–10074. doi:10.1523/JNEUROSCI.5784-12.2013 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
50. Shelton DL, Zeller J, Ho WH, Pons J, Rosenthal A. Nerve growth factor mediates hyperalgesia and cachexia in auto-immune arthritis . Pain . 2005; 116 ( 1–2 ):8–16. doi:10.1016/j.pain.2005.03.039 [ PubMed ] [ CrossRef ] [ Google Scholar ]
51. Jimenez-Andrade JM, Martin CD, Koewler NJ, et al. Nerve growth factor sequestering therapy attenuates non-malignant skeletal pain following fracture . Pain . 2007; 133 ( 1–3 ):183–196. doi:10.1016/j.pain.2007.06.016 [ PubMed ] [ CrossRef ] [ Google Scholar ]
52. Ro LS, Chen ST, Tang LM, Jacobs JM. Effect of NGF and anti-NGF on neuropathic pain in rats following chronic constriction injury of the sciatic nerve . Pain . 1999; 79 ( 2–3 ):265–274. doi:10.1016/S0304-3959(98)00164-X [ PubMed ] [ CrossRef ] [ Google Scholar ]
53. Bloom AP, Jimenez-Andrade JM, Taylor RN, et al. Breast cancer-induced bone remodeling, skeletal pain, and sprouting of sensory nerve fibers . J Pain . 2011; 12 ( 6 ):698–711. doi:10.1016/j.jpain.2010.12.016 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
54. Ghilardi JR, Freeman KT, Jimenez-Andrade JM, et al. Neuroplasticity of sensory and sympathetic nerve fibers in a mouse model of a painful arthritic joint . Arthritis Rheum . 2012; 64 ( 7 ):2223–2232. [ PMC free article ] [ PubMed ] [ Google Scholar ]
55. Jimenez-Andrade JM, Ghilardi JR, Castaneda-Corral G, Kuskowski MA, Mantyh PW. Preventive or late administration of anti-NGF therapy attenuates tumor-induced nerve sprouting, neuroma formation, and cancer pain . Pain . 2011; 152 ( 11 ):2564–2574. doi:10.1016/j.pain.2011.07.020 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
56. Ishikawa G, Koya Y, Tanaka H, Nagakura Y. Long-term analgesic effect of a single dose of anti-NGF antibody on pain during motion without notable suppression of joint edema and lesion in a rat model of osteoarthritis . Osteoarthritis Cartilage . 2015; 23 ( 6 ):925–932. doi:10.1016/j.joca.2015.02.002 [ PubMed ] [ CrossRef ] [ Google Scholar ]
57. Koewler NJ, Freeman KT, Buus RJ, et al. Effects of a monoclonal antibody raised against nerve growth factor on skeletal pain and bone healing after fracture of the C57BL/6J mouse femur . J Bone Miner Res . 2007; 22 ( 11 ):1732–1742. doi:10.1359/jbmr.070711 [ PubMed ] [ CrossRef ] [ Google Scholar ]
58. LaBranche TP, Bendele AM, Omura BC, et al. Nerve growth factor inhibition with tanezumab influences weight-bearing and subsequent cartilage damage in the rat medial meniscal tear model . Ann Rheum Dis . 2017; 76 ( 1 ):295–302. doi:10.1136/annrheumdis-2015-208913 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
59. Miyagi M, Ishikawa T, Kamoda H, et al. Efficacy of nerve growth factor antibody in a knee osteoarthritis pain model in mice . BMC Musculoskelet Disord . 2017; 18 ( 1 ):428. doi:10.1186/s12891-017-1792-x [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
60. Sevcik MA, Ghilardi JR, Peters CM, et al. Anti-NGF therapy profoundly reduces bone cancer pain and the accompanying increase in markers of peripheral and central sensitization . Pain . 2005; 115 ( 1–2 ):128–141. doi:10.1016/j.pain.2005.02.022 [ PubMed ] [ CrossRef ] [ Google Scholar ]
61. Aloe L, Tuveri MA, Carcassi U, Levi-Montalcini R. Nerve growth factor in the synovial fluid of patients with chronic arthritis . Arthritis Rheum . 1992; 35 ( 3 ):351–355. doi:10.1002/art.1780350315 [ PubMed ] [ CrossRef ] [ Google Scholar ]
62. Halliday DA, Zettler C, Rush RA, Scicchitano R, McNeil JD. Elevated nerve growth factor levels in the synovial fluid of patients with inflammatory joint disease . Neurochem Res . 1998; 23 ( 6 ):919–922. doi:10.1023/A:1022475432077 [ PubMed ] [ CrossRef ] [ Google Scholar ]
63. Walsh DA, McWilliams DF, Turley MJ, et al. Angiogenesis and nerve growth factor at the osteochondral junction in rheumatoid arthritis and osteoarthritis . Rheumatology (Oxford) . 2010; 49 ( 10 ):1852–1861. doi:10.1093/rheumatology/keq188 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
64. Iannone F, De Bari C, Dell’Accio F, et al. Increased expression of nerve growth factor (NGF) and high affinity NGF receptor (p140 TrkA) in human osteoarthritic chondrocytes . Rheumatology (Oxford) . 2002; 41 ( 12 ):1413–1418. doi:10.1093/rheumatology/41.12.1413 [ PubMed ] [ CrossRef ] [ Google Scholar ]
65. Jiang YH, Peng CH, Liu HT, Kuo HC. Increased pro-inflammatory cytokines, C-reactive protein and nerve growth factor expressions in serum of patients with interstitial cystitis/bladder pain syndrome . PLoS One . 2013; 8 ( 10 ):e76779. doi:10.1371/journal.pone.0076779 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
66. Okragly AJ, Niles AL, Saban R, et al. Elevated tryptase, nerve growth factor, neurotrophin-3 and glial cell line-derived neurotrophic factor levels in the urine of interstitial cystitis and bladder cancer patients . J Urol . 1999; 161 ( 2 ):438–441; discussion 441–432. doi:10.1016/S0022-5347(01)61915-3 [ PubMed ] [ CrossRef ] [ Google Scholar ]
67. Liu HT, Tyagi P, Chancellor MB, Kuo HC. Urinary nerve growth factor level is increased in patients with interstitial cystitis/bladder pain syndrome and decreased in responders to treatment . BJU Int . 2009; 104 ( 10 ):1476–1481. doi:10.1111/j.1464-410X.2009.08675.x [ PubMed ] [ CrossRef ] [ Google Scholar ]
68. Lowe EM, Anand P, Terenghi G, Williams-Chestnut RE, Sinicropi DV, Osborne JL. Increased nerve growth factor levels in the urinary bladder of women with idiopathic sensory urgency and interstitial cystitis . Br J Urol . 1997; 79 ( 4 ):572–577. doi:10.1046/j.1464-410X.1997.00097.x [ PubMed ] [ CrossRef ] [ Google Scholar ]
69. Watanabe T, Inoue M, Sasaki K, et al. Nerve growth factor level in the prostatic fluid of patients with chronic prostatitis/chronic pelvic pain syndrome is correlated with symptom severity and response to treatment . BJU Int . 2011; 108 ( 2 ):248–251. doi:10.1111/j.1464-410X.2010.09716.x [ PubMed ] [ CrossRef ] [ Google Scholar ]
70. Giovengo SL, Russell IJ, Larson AA. Increased concentrations of nerve growth factor in cerebrospinal fluid of patients with fibromyalgia . J Rheumatol . 1999; 26 ( 7 ):1564–1569. [ PubMed ] [ Google Scholar ]
71. Sarchielli P, Alberti A, Floridi A, Gallai V. Levels of nerve growth factor in cerebrospinal fluid of chronic daily headache patients . Neurology . 2001; 57 ( 1 ):132–134. doi:10.1212/WNL.57.1.132 [ PubMed ] [ CrossRef ] [ Google Scholar ]
72. Sobue G, Yamamoto M, Doyu M, Li M, Yasuda T, Mitsuma T. Expression of mRNAs for neurotrophins (NGF, BDNF, and NT-3) and their receptors (p75NGFR, trk, trkB, and trkC) in human peripheral neuropathies . Neurochem Res . 1998; 23 ( 6 ):821–829. doi:10.1023/A:1022434209787 [ PubMed ] [ CrossRef ] [ Google Scholar ]
73. Freemont AJ, Watkins A, Le Maitre C, et al. Nerve growth factor expression and innervation of the painful intervertebral disc . J Pathol . 2002; 197 ( 3 ):286–292. doi:10.1002/path.1108 [ PubMed ] [ CrossRef ] [ Google Scholar ]
74. Richardson SM, Doyle P, Minogue BM, Gnanalingham K, Hoyland JA. Increased expression of matrix metalloproteinase-10, nerve growth factor and substance P in the painful degenerate intervertebral disc . Arthritis Res Ther . 2009; 11 ( 4 ):R126. doi:10.1186/ar2793 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
75. Aoki Y, Nakajima A, Ohtori S, et al. Increase of nerve growth factor levels in the human herniated intervertebral disc: can annular rupture trigger discogenic back pain? Arthritis Res Ther . 2014; 16 ( 4 ):R159. doi:10.1186/ar4674 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
76. Zhu Z, Friess H, diMola FF, et al. Nerve growth factor expression correlates with perineural invasion and pain in human pancreatic cancer . J Clin Oncol . 1999; 17 ( 8 ):2419–2428. doi:10.1200/JCO.1999.17.8.2419 [ PubMed ] [ CrossRef ] [ Google Scholar ]
77. Paterson S, Schmelz M, McGlone F, Turner G, Rukwied R. Facilitated neurotrophin release in sensitized human skin . Eur J Pain . 2009; 13 ( 4 ):399–405. doi:10.1016/j.ejpain.2008.05.005 [ PubMed ] [ CrossRef ] [ Google Scholar ]
78. Jablochkova A, Backryd E, Kosek E, et al. Unaltered low nerve growth factor and high brain-derived neurotrophic factor levels in plasma from patients with fibromyalgia after a 15-week progressive resistance exercise . J Rehabil Med . 2019; 51 ( 10 ):779–787. doi:10.2340/16501977-2593 [ PubMed ] [ CrossRef ] [ Google Scholar ]
79. Andreev N, Dimitrieva N, Koltzenburg M, McMahon SB. Peripheral administration of nerve growth factor in the adult rat produces a thermal hyperalgesia that requires the presence of sympathetic post-ganglionic neurones . Pain . 1995; 63 ( 1 ):109–115. doi:10.1016/0304-3959(95)00024-M [ PubMed ] [ CrossRef ] [ Google Scholar ]
80. Davis BM, Lewin GR, Mendell LM, Jones ME, Albers KM. Altered expression of nerve growth factor in the skin of transgenic mice leads to changes in response to mechanical stimuli . Neuroscience . 1993; 56 ( 4 ):789–792. doi:10.1016/0306-4522(93)90127-2 [ PubMed ] [ CrossRef ] [ Google Scholar ]
81. Schnegelsberg B, Sun TT, Cain G, et al. Overexpression of NGF in mouse urothelium leads to neuronal hyperinnervation, pelvic sensitivity, and changes in urinary bladder function . Am J Physiol Regul Integr Comp Physiol . 2010; 298 ( 3 ):R534–R547. doi:10.1152/ajpregu.00367.2009 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
82. Petty BG, Cornblath DR, Adornato BT, et al. The effect of systemically administered recombinant human nerve growth factor in healthy human subjects . Ann Neurol . 1994; 36 ( 2 ):244–246. doi:10.1002/ana.410360221 [ PubMed ] [ CrossRef ] [ Google Scholar ]
83. Rukwied R, Mayer A, Kluschina O, Obreja O, Schley M, Schmelz M. NGF induces non-inflammatory localized and lasting mechanical and thermal hypersensitivity in human skin . Pain . 2010; 148 ( 3 ):407–413. doi:10.1016/j.pain.2009.11.022 [ PubMed ] [ CrossRef ] [ Google Scholar ]
84. Weinkauf B, Obreja O, Schmelz M, Rukwied R. Differential time course of NGF-induced hyperalgesia to heat versus mechanical and electrical stimulation in human skin . Eur J Pain . 2015; 19 ( 6 ):789–796. doi:10.1002/ejp.603 [ PubMed ] [ CrossRef ] [ Google Scholar ]
85. Andersen HH, Lo Vecchio S, Elberling J, Yosipovitch G, Arendt-Nielsen L. UVB- and NGF-induced cutaneous sensitization in humans selectively augments cowhage- and histamine-induced pain and evokes mechanical hyperknesis . Exp Dermatol . 2018; 27 ( 3 ):258–267. doi:10.1111/exd.13508 [ PubMed ] [ CrossRef ] [ Google Scholar ]
86. Andresen T, Nilsson M, Nielsen AK, Lassen D, Arendt-Nielsen L, Drewes AM. Intradermal injection with nerve growth factor: a reproducible model to induce experimental allodynia and hyperalgesia . Pain Pract . 2016; 16 ( 1 ):12–23. doi:10.1111/papr.12267 [ PubMed ] [ CrossRef ] [ Google Scholar ]
87. Weinkauf B, Obreja O, Schmelz M, Rukwied R. Differential effects of lidocaine on nerve growth factor (NGF)-evoked heat- and mechanical hyperalgesia in humans . Eur J Pain . 2012; 16 ( 4 ):543–549. doi:10.1016/j.ejpain.2011.08.004 [ PubMed ] [ CrossRef ] [ Google Scholar ]
88. Rukwied B, Weinkauf B, Main M, Obreja O, Schmelz M. Axonal hyperexcitability after combined NGF sensitization and UV-B inflammation in humans . Eur J Pain . 2014; 18 ( 6 ):785–793. doi:10.1002/j.1532-2149.2013.00423.x [ PubMed ] [ CrossRef ] [ Google Scholar ]
89. Rukwied R, Weinkauf B, Main M, Obreja O, Schmelz M. Inflammation meets sensitization–an explanation for spontaneous nociceptor activity? Pain . 2013; 154 ( 12 ):2707–2714. doi:10.1016/j.pain.2013.07.054 [ PubMed ] [ CrossRef ] [ Google Scholar ]
90. Svensson P, Cairns BE, Wang K, Arendt-Nielsen L. Injection of nerve growth factor into human masseter muscle evokes long-lasting mechanical allodynia and hyperalgesia . Pain . 2003; 104 ( 1–2 ):241–247. doi:10.1016/S0304-3959(03)00012-5 [ PubMed ] [ CrossRef ] [ Google Scholar ]
91. Svensson P, Wang K, Arendt-Nielsen L, Cairns BE. Effects of NGF-induced muscle sensitization on proprioception and nociception . Exp Brain Res . 2008; 189 ( 1 ):1–10. doi:10.1007/s00221-008-1399-4 [ PubMed ] [ CrossRef ] [ Google Scholar ]
92. Svensson P, Castrillon E, Cairns BE. Nerve growth factor-evoked masseter muscle sensitization and perturbation of jaw motor function in healthy women . J Orofac Pain . 2008; 22 ( 4 ):340–348. [ PubMed ] [ Google Scholar ]
93. Andersen H, Arendt-Nielsen L, Svensson P, Danneskiold-Samsoe B, Graven-Nielsen T. Spatial and temporal aspects of muscle hyperalgesia induced by nerve growth factor in humans . Exp Brain Res . 2008; 191 ( 3 ):371–382. doi:10.1007/s00221-008-1531-5 [ PubMed ] [ CrossRef ] [ Google Scholar ]
94. Gerber RK, Nie H, Arendt-Nielsen L, Curatolo M, Graven-Nielsen T. Local pain and spreading hyperalgesia induced by intramuscular injection of nerve growth factor are not reduced by local anesthesia of the muscle . Clin J Pain . 2011; 27 ( 3 ):240–247. doi:10.1097/AJP.0b013e3182048481 [ PubMed ] [ CrossRef ] [ Google Scholar ]
95. Lo Vecchio S, Petersen LJ, Finocchietti S, et al. Interaction between ultraviolet B-induced cutaneous hyperalgesia and nerve growth factor-induced muscle hyperalgesia . Eur J Pain . 2016; 20 ( 7 ):1058–1069. doi:10.1002/ejp.828 [ PubMed ] [ CrossRef ] [ Google Scholar ]
96. Vecchio SL, Finocchietti S, Gazerani P, Petersen LJ, Arendt-Nielsen L, Graven-Nielsen T. Heat-rekindling in UVB-irradiated skin above NGF-sensitized muscle: experimental models of prolonged mechanical hypersensitivity . Int J Physiol Pathophysiol Pharmacol . 2014; 6 ( 3 ):143–152. [ PMC free article ] [ PubMed ] [ Google Scholar ]
97. De Martino E, Zandalasini M, Schabrun S, Petrini L, Graven-Nielsen T. Experimental muscle hyperalgesia modulates sensorimotor cortical excitability, which is partially altered by unaccustomed exercise . Pain . 2018; 159 ( 12 ):2493–2502. doi:10.1097/j.pain.0000000000001351 [ PubMed ] [ CrossRef ] [ Google Scholar ]
98. Sorensen LB, Boudreau SA, Gazerani P, Graven-Nielsen T. Enlarged areas of pain and pressure hypersensitivity by spatially distributed intramuscular injections of low-dose nerve growth factor . J Pain . 2019; 20 ( 5 ):566–576. doi:10.1016/j.jpain.2018.11.005 [ PubMed ] [ CrossRef ] [ Google Scholar ]
99. Mista CA, Bergin MJG, Hirata RP, et al. Effects of prolonged and acute muscle pain on the force control strategy during isometric contractions . J Pain . 2016; 17 ( 10 ):1116–1125. doi:10.1016/j.jpain.2016.06.013 [ PubMed ] [ CrossRef ] [ Google Scholar ]
100. Nie H, Madeleine P, Arendt-Nielsen L, Graven-Nielsen T. Temporal summation of pressure pain during muscle hyperalgesia evoked by nerve growth factor and eccentric contractions . Eur J Pain . 2009; 13 ( 7 ):704–710. doi:10.1016/j.ejpain.2008.06.015 [ PubMed ] [ CrossRef ] [ Google Scholar ]
101. Munkholm TK, Arendt-Nielsen L. The interaction between NGF-induced hyperalgesia and acid-provoked pain in the infrapatellar fat pad and tibialis anterior muscle of healthy volunteers . Eur J Pain . 2017; 21 ( 3 ):474–485. doi:10.1002/ejp.941 [ PubMed ] [ CrossRef ] [ Google Scholar ]
102. Hayashi K, Shiozawa S, Ozaki N, Mizumura K, Graven-Nielsen T. Repeated intramuscular injections of nerve growth factor induced progressive muscle hyperalgesia, facilitated temporal summation, and expanded pain areas . Pain . 2013; 154 ( 11 ):2344–2352. doi:10.1016/j.pain.2013.07.007 [ PubMed ] [ CrossRef ] [ Google Scholar ]
103. Deising S, Weinkauf B, Blunk J, Obreja O, Schmelz M, Rukwied R. NGF-evoked sensitization of muscle fascia nociceptors in humans . Pain . 2012; 153 ( 8 ):1673–1679. doi:10.1016/j.pain.2012.04.033 [ PubMed ] [ CrossRef ] [ Google Scholar ]
104. Hirth M, Rukwied R, Gromann A, et al. Nerve growth factor induces sensitization of nociceptors without evidence for increased intraepidermal nerve fiber density . Pain . 2013; 154 ( 11 ):2500–2511. doi:10.1016/j.pain.2013.07.036 [ PubMed ] [ CrossRef ] [ Google Scholar ]
105. Obreja O, Ringkamp M, Turnquist B, et al. Nerve growth factor selectively decreases activity-dependent conduction slowing in mechano-insensitive C-nociceptors . Pain . 2011; 152 ( 9 ):2138–2146. doi:10.1016/j.pain.2011.05.021 [ PubMed ] [ CrossRef ] [ Google Scholar ]
106. Obreja O, Kluschina O, Mayer A, et al. NGF enhances electrically induced pain, but not axon reflex sweating . Pain . 2011; 152 ( 8 ):1856–1863. doi:10.1016/j.pain.2011.04.002 [ PubMed ] [ CrossRef ] [ Google Scholar ]
107. Obreja O, Rukwied R, Nagler L, Schmidt M, Schmelz M, Namer B. Nerve growth factor locally sensitizes nociceptors in human skin . Pain . 2018; 159 ( 3 ):416–426. doi:10.1097/j.pain.0000000000001108 [ PubMed ] [ CrossRef ] [ Google Scholar ]
108. Leon A, Buriani A, Dal Toso R, et al. Mast cells synthesize, store, and release nerve growth factor . Proc Natl Acad Sci U S A . 1994; 91 ( 9 ):3739–3743. doi:10.1073/pnas.91.9.3739 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
109. Nilsson G, Forsberg-Nilsson K, Xiang Z, Hallbook F, Nilsson K, Metcalfe DD. Human mast cells express functional TrkA and are a source of nerve growth factor . Eur J Immunol . 1997; 27 ( 9 ):2295–2301. doi:10.1002/eji.1830270925 [ PubMed ] [ CrossRef ] [ Google Scholar ]
110. Lambiase A, Bracci-Laudiero L, Bonini S, et al. Human CD4+ T cell clones produce and release nerve growth factor and express high-affinity nerve growth factor receptors . J Allergy Clin Immunol . 1997; 100 ( 3 ):408–414. doi:10.1016/S0091-6749(97)70256-2 [ PubMed ] [ CrossRef ] [ Google Scholar ]
111. Rost B, Hanf G, Ohnemus U, et al. Monocytes of allergics and non-allergics produce, store and release the neurotrophins NGF, BDNF and NT-3 . Regul Pept . 2005; 124 ( 1–3 ):19–25. doi:10.1016/j.regpep.2004.06.024 [ PubMed ] [ CrossRef ] [ Google Scholar ]
112. Dray A. Inflammatory mediators of pain . Br J Anaesth . 1995; 75 ( 2 ):125–131. doi:10.1093/bja/75.2.125 [ PubMed ] [ CrossRef ] [ Google Scholar ]
113. Rudick CN, Bryce PJ, Guichelaar LA, Berry RE, Klumpp DJ, Zimmer J. Mast cell-derived histamine mediates cystitis pain . PLoS One . 2008; 3 ( 5 ):e2096. doi:10.1371/journal.pone.0002096 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
114. Ren K, Torres R. Role of interleukin-1beta during pain and inflammation . Brain Res Rev . 2009; 60 ( 1 ):57–64. doi:10.1016/j.brainresrev.2008.12.020 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
115. Babenko V, Graven-Nielsen T, Svensson P, Drewes AM, Jensen TS, Arendt-Nielsen L. Experimental human muscle pain and muscular hyperalgesia induced by combinations of serotonin and bradykinin . Pain . 1999; 82 ( 1 ):1–8. doi:10.1016/S0304-3959(99)00026-3 [ PubMed ] [ CrossRef ] [ Google Scholar ]
116. Linhart O, Obreja O, Kress M. The inflammatory mediators serotonin, prostaglandin E2 and bradykinin evoke calcium influx in rat sensory neurons . Neuroscience . 2003; 118 ( 1 ):69–74. doi:10.1016/S0306-4522(02)00960-0 [ PubMed ] [ CrossRef ] [ Google Scholar ]
117. Sugiura T, Tominaga M, Katsuya H, Mizumura K. Bradykinin lowers the threshold temperature for heat activation of vanilloid receptor 1 . J Neurophysiol . 2002; 88 ( 1 ):544–548. doi:10.1152/jn.2002.88.1.544 [ PubMed ] [ CrossRef ] [ Google Scholar ]
118. Khasar SG, Miao FJ-P, Janig W, Levine JD. Modulation of bradykinin-induced mechanical hyperalgesia in the rat by activity in abdominal vagal afferents . Eur J Neurosci . 1998; 10 ( 2 ):435–444. doi:10.1046/j.1460-9568.1998.00030.x [ PubMed ] [ CrossRef ] [ Google Scholar ]
119. Bischoff SC, Dahinden CA. Effect of nerve growth factor on the release of inflammatory mediators by mature human basophils . Blood . 1992; 79 ( 10 ):2662–2669. doi:10.1182/blood.V79.10.2662.bloodjournal79102662 [ PubMed ] [ CrossRef ] [ Google Scholar ]
120. Tal M, Liberman R. Local injection of nerve growth factor (NGF) triggers degranulation of mast cells in rat paw . Neurosci Lett . 1997; 221 ( 2–3 ):129–132. doi:10.1016/S0304-3940(96)13318-8 [ PubMed ] [ CrossRef ] [ Google Scholar ]
121. Horigome K, Pryor JC, Bullock ED, Johnson EM Jr. Mediator release from mast cells by nerve growth factor. Neurotrophin specificity and receptor mediation . J Biol Chem . 1993; 268 ( 20 ):14881–14887. [ PubMed ] [ Google Scholar ]
122. Mazurek N, Weskamp G, Erne P, Otten U. Nerve growth factor induces mast cell degranulation without changing intracellular calcium levels . FEBS Lett . 1986; 198 ( 2 ):315–320. doi:10.1016/0014-5793(86)80428-8 [ PubMed ] [ CrossRef ] [ Google Scholar ]
123. Groneberg DA, Serowka F, Peckenschneider N, et al. Gene expression and regulation of nerve growth factor in atopic dermatitis mast cells and the human mast cell line-1 . J Neuroimmunol . 2005; 161 ( 1–2 ):87–92. doi:10.1016/j.jneuroim.2004.12.019 [ PubMed ] [ CrossRef ] [ Google Scholar ]
124. Lopes DM, Denk F, Chisholm KI, et al. Peripheral inflammatory pain sensitisation is independent of mast cell activation in male mice . Pain . 2017; 158 ( 7 ):1314–1322. doi:10.1097/j.pain.0000000000000917 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
125. Susaki Y, Shimizu S, Katakura K, et al. Functional properties of murine macrophages promoted by nerve growth factor . Blood . 1996; 88 ( 12 ):4630–4637. doi:10.1182/blood.V88.12.4630.bloodjournal88124630 [ PubMed ] [ CrossRef ] [ Google Scholar ]
126. Shim W-S, Oh U. Histamine-induced itch and its relationship with pain . Mol Pain . 2008; 4 :29. doi:10.1186/1744-8069-4-29 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
127. Rosa AC, Fantozzi R. The role of histamine in neurogenic inflammation . Br J Pharmacol . 2013; 170 ( 1 ):38–45. doi:10.1111/bph.12266 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
128. Kasai M, Kumazawa T, Mizumura K. Nerve growth factor increases sensitivity to bradykinin, mediated through B2 receptors, in capsaicin-sensitive small neurons cultured from rat dorsal root ganglia . Neurosci Res . 1998; 32 ( 3 ):231–239. doi:10.1016/S0168-0102(98)00092-3 [ PubMed ] [ CrossRef ] [ Google Scholar ]
129. Lindholm D, Heumann R, Meyer M, Thoenen H. Interleukin-1 regulates synthesis of nerve growth factor in non-neuronal cells of rat sciatic nerve . Nature . 1987; 330 ( 6149 ):658–659. doi:10.1038/330658a0 [ PubMed ] [ CrossRef ] [ Google Scholar ]
130. Rueff A, Dawson AJ, Mendell LM. Characteristics of nerve growth factor induced hyperalgesia in adult rats: dependence on enhanced bradykinin-1 receptor activity but not neurokinin-1 receptor activation . Pain . 1996; 66 ( 2–3 ):359–372. doi:10.1016/0304-3959(96)03060-6 [ PubMed ] [ CrossRef ] [ Google Scholar ]
131. Bonnington JK, McNaughton PA. Signalling pathways involved in the sensitisation of mouse nociceptive neurones by nerve growth factor . J Physiol . 2003; 551 ( Pt 2 ):433–446. doi:10.1113/jphysiol.2003.039990 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
132. Zhu W, Oxford GS. Phosphoinositide-3-kinase and mitogen activated protein kinase signaling pathways mediate acute NGF sensitization of TRPV1 . Mol Cell Neurosci . 2007; 34 ( 4 ):689–700. doi:10.1016/j.mcn.2007.01.005 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
133. Chuang HH, Prescott ED, Kong H, et al. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition . Nature . 2001; 411 ( 6840 ):957–962. doi:10.1038/35082088 [ PubMed ] [ CrossRef ] [ Google Scholar ]
134. Zhang X, Huang J, McNaughton PA. NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels . EMBO J . 2005; 24 ( 24 ):4211–4223. doi:10.1038/sj.emboj.7600893 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
135. Bernstein CD, Diaz JH, Gould HJ 3rd. A possible role for zonisamide in treating neuropathic pain: a case of idiopathic polyneuropathy . Pain Pract . 2002; 2 ( 2 ):134–136. doi:10.1046/j.1533-2500.2002.02015.x [ PubMed ] [ CrossRef ] [ Google Scholar ]
136. Vulchanova L, Riedl MS, Shuster SJ, et al. P2X3 is expressed by DRG neurons that terminate in inner lamina II . Eur J Neurosci . 1998; 10 ( 11 ):3470–3478. doi:10.1046/j.1460-9568.1998.00355.x [ PubMed ] [ CrossRef ] [ Google Scholar ]
137. D’Arco M, Giniatullin R, Simonetti M, et al. Neutralization of nerve growth factor induces plasticity of ATP-sensitive P2X3 receptors of nociceptive trigeminal ganglion neurons . J Neurosci . 2007; 27 ( 31 ):8190–8201. doi:10.1523/JNEUROSCI.0713-07.2007 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
138. Simonetti M, Fabbro A, D’Arco M, et al. Comparison of P2X and TRPV1 receptors in ganglia or primary culture of trigeminal neurons and their modulation by NGF or serotonin . Mol Pain . 2006; 2 :11. doi:10.1186/1744-8069-2-11 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
139. Giniatullin R, Nistri A, Fabbretti E. Molecular mechanisms of sensitization of pain-transducing P2X3 receptors by the migraine mediators CGRP and NGF . Mol Neurobiol . 2008; 37 ( 1 ):83–90. doi:10.1007/s12035-008-8020-5 [ PubMed ] [ CrossRef ] [ Google Scholar ]
140. Zhang YH, Vasko MR, Nicol GD. Ceramide, a putative second messenger for nerve growth factor, modulates the TTX-resistant Na(+) current and delayed rectifier K(+) current in rat sensory neurons . J Physiol . 2002; 544 ( 2 ):385–402. doi:10.1113/jphysiol.2002.024265 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
141. Stamboulian S, Choi JS, Ahn HS, et al. ERK1/2 mitogen-activated protein kinase phosphorylates sodium channel Na(v)1.7 and alters its gating properties . J Neurosci . 2010; 30 ( 5 ):1637–1647. doi:10.1523/JNEUROSCI.4872-09.2010 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
142. Hudmon A, Choi JS, Tyrrell L, et al. Phosphorylation of sodium channel Na(v)1.8 by p38 mitogen-activated protein kinase increases current density in dorsal root ganglion neurons . J Neurosci . 2008; 28 ( 12 ):3190–3201. doi:10.1523/JNEUROSCI.4403-07.2008 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
143. Malik-Hall M, Dina OA, Levine JD. Primary afferent nociceptor mechanisms mediating NGF-induced mechanical hyperalgesia . Eur J Neurosci . 2005; 21 ( 12 ):3387–3394. doi:10.1111/j.1460-9568.2005.04173.x [ PubMed ] [ CrossRef ] [ Google Scholar ]
144. Zhuang ZY, Xu H, Clapham DE, Ji RR. Phosphatidylinositol 3-kinase activates ERK in primary sensory neurons and mediates inflammatory heat hyperalgesia through TRPV1 sensitization . J Neurosci . 2004; 24 ( 38 ):8300–8309. doi:10.1523/JNEUROSCI.2893-04.2004 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
145. Zhang YH, Nicol GD. NGF-mediated sensitization of the excitability of rat sensory neurons is prevented by a blocking antibody to the p75 neurotrophin receptor . Neurosci Lett . 2004; 366 ( 2 ):187–192. doi:10.1016/j.neulet.2004.05.042 [ PubMed ] [ CrossRef ] [ Google Scholar ]
146. Khodorova A, Nicol GD, Strichartz G. The p75NTR signaling cascade mediates mechanical hyperalgesia induced by nerve growth factor injected into the rat hind paw . Neuroscience . 2013; 254 :312–323. doi:10.1016/j.neuroscience.2013.09.046 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
147. Dobrowsky RT, Werner MH, Castellino AM, Chao MV, Hannun YA. Activation of the sphingomyelin cycle through the low-affinity neurotrophin receptor . Science . 1994; 265 ( 5178 ):1596–1599. doi:10.1126/science.8079174 [ PubMed ] [ CrossRef ] [ Google Scholar ]
148. Wong H, Kang I, Dong XD, et al. NGF-induced mechanical sensitization of the masseter muscle is mediated through peripheral NMDA receptors . Neuroscience . 2014; 269 :232–244. doi:10.1016/j.neuroscience.2014.03.054 [ PubMed ] [ CrossRef ] [ Google Scholar ]
149. Xue Q, Jong B, Chen T, Schumacher MA. Transcription of rat TRPV1 utilizes a dual promoter system that is positively regulated by nerve growth factor . J Neurochem . 2007; 101 ( 1 ):212–222. doi:10.1111/j.1471-4159.2006.04363.x [ PubMed ] [ CrossRef ] [ Google Scholar ]
150. Stein AT, Ufret-Vincenty CA, Hua L, Santana LF, Gordon SE. Phosphoinositide 3-kinase binds to TRPV1 and mediates NGF-stimulated TRPV1 trafficking to the plasma membrane . J Gen Physiol . 2006; 128 ( 5 ):509–522. doi:10.1085/jgp.200609576 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
151. Camprubi-Robles M, Planells-Cases R, Ferrer-Montiel A. Differential contribution of SNARE-dependent exocytosis to inflammatory potentiation of TRPV1 in nociceptors . FASEB J . 2009; 23 ( 11 ):3722–3733. doi:10.1096/fj.09-134346 [ PubMed ] [ CrossRef ] [ Google Scholar ]
152. Gould HJ 3rd, Gould TN, England JD, Paul D, Liu ZP, Levinson SR. A possible role for nerve growth factor in the augmentation of sodium channels in models of chronic pain . Brain Res . 2000; 854 ( 1–2 ):19–29. doi:10.1016/S0006-8993(99)02216-7 [ PubMed ] [ CrossRef ] [ Google Scholar ]
153. Ramer MS, Bradbury EJ, McMahon SB. Nerve growth factor induces P2X(3) expression in sensory neurons . J Neurochem . 2001; 77 ( 3 ):864–875. doi:10.1046/j.1471-4159.2001.00288.x [ PubMed ] [ CrossRef ] [ Google Scholar ]
154. Lee YJ, Zachrisson O, Tonge DA, McNaughton PA. Upregulation of bradykinin B2 receptor expression by neurotrophic factors and nerve injury in mouse sensory neurons . Mol Cell Neurosci . 2002; 19 ( 2 ):186–200. doi:10.1006/mcne.2001.1073 [ PubMed ] [ CrossRef ] [ Google Scholar ]
155. Petersen M, Segond von Banchet G, Heppelmann B, Koltzenburg M. Nerve growth factor regulates the expression of bradykinin binding sites on adult sensory neurons via the neurotrophin receptor p75 . Neuroscience . 1998; 83 ( 1 ):161–168. doi:10.1016/S0306-4522(97)00374-6 [ PubMed ] [ CrossRef ] [ Google Scholar ]
156. Mamet J, Baron A, Lazdunski M, Voilley N. Proinflammatory mediators, stimulators of sensory neuron excitability via the expression of acid-sensing ion channels . J Neurosci . 2002; 22 ( 24 ):10662–10670. doi:10.1523/JNEUROSCI.22-24-10662.2002 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
157. Mamet J, Lazdunski M, Voilley N. How nerve growth factor drives physiological and inflammatory expressions of acid-sensing ion channel 3 in sensory neurons . J Biol Chem . 2003; 278 ( 49 ):48907–48913. doi:10.1074/jbc.M309468200 [ PubMed ] [ CrossRef ] [ Google Scholar ]
158. Matricon J, Muller E, Accarie A, et al. Peripheral contribution of NGF and ASIC1a to colonic hypersensitivity in a rat model of irritable bowel syndrome . Neurogastroenterol Motil . 2013; 25 ( 11 ):e740–e754. doi:10.1111/nmo.12199 [ PubMed ] [ CrossRef ] [ Google Scholar ]
159. Amann R, Schuligoi R, Herzeg G, Donnerer J. Intraplantar injection of nerve growth factor into the rat hind paw: local edema and effects on thermal nociceptive threshold . Pain . 1996; 64 ( 2 ):323–329. doi:10.1016/0304-3959(95)00120-4 [ PubMed ] [ CrossRef ] [ Google Scholar ]
160. Skoff AM, Adler JE. Nerve growth factor regulates substance P in adult sensory neurons through both TrkA and p75 receptors . Exp Neurol . 2006; 197 ( 2 ):430–436. doi:10.1016/j.expneurol.2005.10.006 [ PubMed ] [ CrossRef ] [ Google Scholar ]
161. Apfel SC. Nerve growth factor for the treatment of diabetic neuropathy: what went wrong, what went right, and what does the future hold? Int Rev Neurobiol . 2002; 50 :393–413. [ PubMed ] [ Google Scholar ]
162. Jimenez-Andrade JM, Mantyh PW. Sensory and sympathetic nerve fibers undergo sprouting and neuroma formation in the painful arthritic joint of geriatric mice . Arthritis Res Ther . 2012; 14 ( 3 ):R101. doi:10.1186/ar3826 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
163. Jimenez-Andrade JM, Bloom AP, Stake JI, et al. Pathological sprouting of adult nociceptors in chronic prostate cancer-induced bone pain . J Neurosci . 2010; 30 ( 44 ):14649–14656. doi:10.1523/JNEUROSCI.3300-10.2010 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
164. Cheng CF, Cheng JK, Chen CY, Rau RH, Chang YC, Tsaur ML. Nerve growth factor-induced synapse-like structures in contralateral sensory ganglia contribute to chronic mirror-image pain . Pain . 2015; 156 ( 11 ):2295–2309. doi:10.1097/j.pain.0000000000000280 [ PubMed ] [ CrossRef ] [ Google Scholar ]
165. Lin CL, Heron P, Hamann SR, Smith GM. Functional distinction between NGF-mediated plasticity and regeneration of nociceptive axons within the spinal cord . Neuroscience . 2014; 272 :76–87. doi:10.1016/j.neuroscience.2014.04.053 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
166. Romero MI, Rangappa N, Li L, Lightfoot E, Garry MG, Smith GM. Extensive sprouting of sensory afferents and hyperalgesia induced by conditional expression of nerve growth factor in the adult spinal cord . J Neurosci . 2000; 20 ( 12 ):4435–4445. doi:10.1523/JNEUROSCI.20-12-04435.2000 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
167. Gallo G, Letourneau PC. Localized sources of neurotrophins initiate axon collateral sprouting . J Neurosci . 1998; 18 ( 14 ):5403–5414. doi:10.1523/JNEUROSCI.18-14-05403.1998 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
168. Bjerre B, Bjorklund A, Mobley W, Rosengren E. Short- and long-term effects of nerve growth factor on the sympathetic nervous system in the adult mouse . Brain Res . 1975; 94 ( 2 ):263–277. doi:10.1016/0006-8993(75)90061-X [ PubMed ] [ CrossRef ] [ Google Scholar ]
169. Mantyh WG, Jimenez-Andrade JM, Stake JI, et al. Blockade of nerve sprouting and neuroma formation markedly attenuates the development of late stage cancer pain . Neuroscience . 2010; 171 ( 2 ):588–598. doi:10.1016/j.neuroscience.2010.08.056 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
170. Deng YS, Zhong JH, Zhou XF. Effects of endogenous neurotrophins on sympathetic sprouting in the dorsal root ganglia and allodynia following spinal nerve injury . Exp Neurol . 2000; 164 ( 2 ):344–350. doi:10.1006/exnr.2000.7432 [ PubMed ] [ CrossRef ] [ Google Scholar ]
171. Campenot RB. Local control of neurite sprouting in cultured sympathetic neurons by nerve growth factor . Brain Res . 1987; 465 ( 1–2 ):293–301. doi:10.1016/0165-3806(87)90250-1 [ PubMed ] [ CrossRef ] [ Google Scholar ]
172. Goh EL, Chidambaram S, Ma D. Complex regional pain syndrome: a recent update . Burns Trauma . 2017; 5 :2. doi:10.1186/s41038-016-0066-4 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
173. Baron R, Schattschneider J, Binder A, Siebrecht D, Wasner G. Relation between sympathetic vasoconstrictor activity and pain and hyperalgesia in complex regional pain syndromes: a case-control study . Lancet . 2002; 359 ( 9318 ):1655–1660. doi:10.1016/S0140-6736(02)08589-6 [ PubMed ] [ CrossRef ] [ Google Scholar ]
174. Malcangio M, Garrett NE, Tomlinson DR. Nerve growth factor treatment increases stimulus-evoked release of sensory neuropeptides in the rat spinal cord . Eur J Neurosci . 1997; 9 ( 5 ):1101–1104. doi:10.1111/j.1460-9568.1997.tb01462.x [ PubMed ] [ CrossRef ] [ Google Scholar ]
175. Bird GC, Han JS, Fu Y, Adwanikar H, Willis WD, Neugebauer V. Pain-related synaptic plasticity in spinal dorsal horn neurons: role of CGRP . Mol Pain . 2006; 2 :31. doi:10.1186/1744-8069-2-31 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
176. Murase K, Nedeljkov V, Randic M. The actions of neuropeptides on dorsal horn neurons in the rat spinal cord slice preparation: an intracellular study . Brain Res . 1982; 234 ( 1 ):170–176. doi:10.1016/0006-8993(82)90483-8 [ PubMed ] [ CrossRef ] [ Google Scholar ]
177. Randic M, Hecimovic H, Ryu PD. Substance P modulates glutamate-induced currents in acutely isolated rat spinal dorsal horn neurones . Neurosci Lett . 1990; 117 ( 1–2 ):74–80. doi:10.1016/0304-3940(90)90122-P [ PubMed ] [ CrossRef ] [ Google Scholar ]
178. Nijs J, Meeus M, Versijpt J, et al. Brain-derived neurotrophic factor as a driving force behind neuroplasticity in neuropathic and central sensitization pain: a new therapeutic target? Expert Opin Ther Targets . 2015; 19 ( 4 ):565–576. doi:10.1517/14728222.2014.994506 [ PubMed ] [ CrossRef ] [ Google Scholar ]
179. Michael GJ, Averill S, Nitkunan A, et al. Nerve growth factor treatment increases brain-derived neurotrophic factor selectively in TrkA-expressing dorsal root ganglion cells and in their central terminations within the spinal cord . J Neurosci . 1997; 17 ( 21 ):8476–8490. doi:10.1523/JNEUROSCI.17-21-08476.1997 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
180. Zhou XF, Rush RA. Endogenous brain-derived neurotrophic factor is anterogradely transported in primary sensory neurons . Neuroscience . 1996; 74 ( 4 ):945–953. doi:10.1016/0306-4522(96)00237-0 [ PubMed ] [ CrossRef ] [ Google Scholar ]
181. Lever IJ, Bradbury EJ, Cunningham JR, et al. Brain-derived neurotrophic factor is released in the dorsal horn by distinctive patterns of afferent fiber stimulation . J Neurosci . 2001; 21 ( 12 ):4469–4477. doi:10.1523/JNEUROSCI.21-12-04469.2001 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
182. Zhang YH, Chi XX, Nicol GD. Brain-derived neurotrophic factor enhances the excitability of rat sensory neurons through activation of the p75 neurotrophin receptor and the sphingomyelin pathway . J Physiol . 2008; 586 ( 13 ):3113–3127. doi:10.1113/jphysiol.2008.152439 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
183. Garraway SM, Petruska JC, Mendell LM. BDNF sensitizes the response of lamina II neurons to high threshold primary afferent inputs . Eur J Neurosci . 2003; 18 ( 9 ):2467–2476. doi:10.1046/j.1460-9568.2003.02982.x [ PubMed ] [ CrossRef ] [ Google Scholar ]
184. Woolf CJ. Windup and central sensitization are not equivalent . Pain . 1996; 66 ( 2–3 ):105–108. doi:10.1097/00006396-199608000-00001 [ PubMed ] [ CrossRef ] [ Google Scholar ]
185. Thompson SW, Dray A, McCarson KE, Krause JE, Urban L. Nerve growth factor induces mechanical allodynia associated with novel A fibre-evoked spinal reflex activity and enhanced neurokinin-1 receptor activation in the rat . Pain . 1995; 62 ( 2 ):219–231. doi:10.1016/0304-3959(94)00271-F [ PubMed ] [ CrossRef ] [ Google Scholar ]
186. Balanescu AR, Feist E, Wolfram G, et al. Efficacy and safety of tanezumab added on to diclofenac sustained release in patients with knee or hip osteoarthritis: a double-blind, placebo-controlled, parallel-group, multicentre Phase III randomised clinical trial . Ann Rheum Dis . 2014; 73 ( 9 ):1665–1672. doi:10.1136/annrheumdis-2012-203164 [ PubMed ] [ CrossRef ] [ Google Scholar ]
187. Birbara C, Dabezies EJ Jr, Burr AM, et al. Safety and efficacy of subcutaneous tanezumab in patients with knee or hip osteoarthritis . J Pain Res . 2018; 11 :151–164. doi:10.2147/JPR.S135257 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
188. Brown MT, Murphy FT, Radin DM, Davignon I, Smith MD, West CR. Tanezumab reduces osteoarthritic knee pain: results of a randomized, double-blind, placebo-controlled phase III trial . J Pain . 2012; 13 ( 8 ):790–798. doi:10.1016/j.jpain.2012.05.006 [ PubMed ] [ CrossRef ] [ Google Scholar ]
189. Brown MT, Murphy FT, Radin DM, Davignon I, Smith MD, West CR. Tanezumab reduces osteoarthritic hip pain: results of a randomized, double-blind, placebo-controlled phase III trial . Arthritis Rheum . 2013; 65 ( 7 ):1795–1803. doi:10.1002/art.37950 [ PubMed ] [ CrossRef ] [ Google Scholar ]
190. Kivitz AJ, Gimbel JS, Bramson C, et al. Efficacy and safety of tanezumab versus naproxen in the treatment of chronic low back pain . Pain . 2013; 154 ( 7 ):1009–1021. doi:10.1016/j.pain.2013.03.006 [ PubMed ] [ CrossRef ] [ Google Scholar ]
191. Schnitzer TJ, Ekman EF, Spierings EL, et al. Efficacy and safety of tanezumab monotherapy or combined with non-steroidal anti-inflammatory drugs in the treatment of knee or hip osteoarthritis pain . Ann Rheum Dis . 2015; 74 ( 6 ):1202–1211. doi:10.1136/annrheumdis-2013-204905 [ PubMed ] [ CrossRef ] [ Google Scholar ]
192. Spierings EL, Fidelholtz J, Wolfram G, Smith MD, Brown MT, West CR. A phase III placebo- and oxycodone-controlled study of tanezumab in adults with osteoarthritis pain of the hip or knee . Pain . 2013; 154 ( 9 ):1603–1612. doi:10.1016/j.pain.2013.04.035 [ PubMed ] [ CrossRef ] [ Google Scholar ]
193. Nickel JC, Mills IW, Crook TJ, et al. Tanezumab reduces pain in women with interstitial cystitis/bladder pain syndrome and patients with nonurological associated somatic syndromes . J Urol . 2016; 195 ( 4 Pt 1 ):942–948. doi:10.1016/j.juro.2015.10.178 [ PubMed ] [ CrossRef ] [ Google Scholar ]
194. Tiseo PJ, Kivitz AJ, Ervin JE, Ren H, Mellis SJ. Fasinumab (REGN475), an antibody against nerve growth factor for the treatment of pain: results from a double-blind, placebo-controlled exploratory study in osteoarthritis of the knee . Pain . 2014; 155 ( 7 ):1245–1252. doi:10.1016/j.pain.2014.03.018 [ PubMed ] [ CrossRef ] [ Google Scholar ]
195. Tiseo PJ, Ren H, Mellis S. Fasinumab (REGN475), an antinerve growth factor monoclonal antibody, for the treatment of acute sciatic pain: results of a proof-of-concept study . J Pain Res . 2014; 7 :523–530. doi:10.2147/JPR.S65974 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
196. Schnitzer TJ, Easton R, Pang S, et al. Effect of tanezumab on joint pain, physical function, and patient global assessment of osteoarthritis among patients with osteoarthritis of the hip or knee: a randomized clinical trial . JAMA . 2019; 322 ( 1 ):37–48. doi:10.1001/jama.2019.8044 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
197. Krupka E, Jiang GL, Jan C. Efficacy and safety of intra-articular injection of tropomyosin receptor kinase A inhibitor in painful knee osteoarthritis: a randomized, double-blind and placebo-controlled study . Osteoarthritis Cartilage . 2019; 27 ( 11 ):1599–1607. doi:10.1016/j.joca.2019.05.028 [ PubMed ] [ CrossRef ] [ Google Scholar ]
198. Watt FE, Blauwet MB, Fakhoury A, Jacobs H, Smulders R, Lane NE. Tropomyosin-related kinase A (TrkA) inhibition for the treatment of painful knee osteoarthritis: results from a randomized controlled phase 2a trial . Osteoarthritis Cartilage . 2019; 27 ( 11 ):1590–1598. doi:10.1016/j.joca.2019.05.029 [ PubMed ] [ CrossRef ] [ Google Scholar ]
199. Miller RE, Block JA, Malfait AM. What is new in pain modification in osteoarthritis?

Abbreviation: NGF, nerve growth factor.

Table 1

Summary of Disease States or Conditions in Humans in Which Increased Levels of NGF Were Detected Compared with Controls

Study Disease/Condition Sample Size Sample Matrix NGF Form
Aloe et al 61 Rheumatoid arthritis, osteoarthritis, or other chronic arthritis n = 6 osteoarthritis patients; n = 8 rheumatoid arthritis patients; n = 8 patients with other chronic arthritis; n = 2 control patients who did not have rheumatic disease Synovial fluid Protein
Halliday et al 62 Rheumatoid arthritis or other inflammatory arthropathy n = 13 rheumatoid arthritis patients; n = 10 other inflammatory arthropathies; n = 3 normal volunteers Synovial fluid Protein
Walsh et al 63 Rheumatoid arthritis or osteoarthritis n = 10 rheumatoid arthritis patients; n= 11 osteoarthritis patients; n = 11 non-arthritic post-mortem controls Vascular channels of osteochondral junction Protein
Iannone et al 13 Osteoarthritis n = 12 osteoarthritis patients; n = 3 healthy controls Knee chondrocytes Protein
Jiang et al 65 Interstitial cystitis/bladder pain syndrome n = 30 interstitial cystitis/bladder pain syndrome patients; n = 26 controls Blood serum Protein
Okragly et al 66 Interstitial cystitis or bladder cancer n = 4 interstitial cystitis patients; n = 6 bladder transition cell cancer-carcinoma patients;
n = 7 urinary tract infection patients; n = 7 healthy volunteers
Urine Protein
Liu et al 67 Interstitial cystitis/bladder pain syndrome n = 58 interstitial cystitis/bladder pain syndrome patients; n = 28 healthy controls Urine Protein
Lowe et al 68 Idiopathic sensory urgency, chronic cystitis, or interstitial cystitis n = 4 patients with idiopathic sensory urgency; n = 4 chronic cystitis patients; n = 4 interstitial cystitis patients; n = 4 controls (genuine stress incontinence on cystometry but with no irritative symptoms) Urothelium Protein
Watanabe et al 69 Chronic prostatitis (CP) or chronic pelvic pain syndrome (CPPS) n = 20 CP or CPPS patients; n = 4 healthy male controls with no history of genitourinary symptoms, instrumentation, or surgery Expressed prostatic secretions Protein
Giovenga et al 70 Primary fibromyalgia syndrome n = 34 fibromyalgia syndrome patients; n = 15 patients diagnosed with fibromyalgia in addition to another painful or inflammatory condition; n = 10 other (patients diagnosed with another painful or inflammatory condition, but not fibromyalgia); n = 35 healthy controls Cerebrospinal fluid Protein
Sarchielli et al 71 Chronic daily headache n = 20 chronic daily headache patients; n = 20 age-matched controls who underwent lumbar puncture for diagnostic purposes Cerebrospinal fluid Protein
Sobue et al 72 Various neuropathies a n = 54 neuropathy; n = 4 specimens with normal appearance of morphology and normal nerve conduction Sural nerve segments mRNA
Freemont et al 73 Low back pain n = 21 “pain level” (discography at these levels reproduced the patients’ symptoms of low back pain and/or sciatica) intervertebral disc (IVD) specimens; n = 20 “non-pain level” (discography was either painless or induced sensations that were not described by the patient as mimicking their symptoms) IVD specimens. A total of 41 specimens were taken from 36 patients Intervertebral disc mRNA
Richardson et al 74 Low back pain n = 5 samples from 4 non-degenerate post-mortem nucleus pulposus (NP) patients; n = 9 post-mortem degenerate NP samples from 4 patients; n = 13 surgical degenerate NP samples from 11 patients Nucleus pulposus mRNA
Aoki et al 75 Lumbar degenerative disc disease n = 29 patients with herniated discs; n = 26 patients with other degenerated disc diseases b Nucleus pulposus Protein
Zhu et al 76 Pancreatic cancer n = 37 pancreatic cancer patients; n = 27 pancreatic samples from humans free of pancreatic disease through an organ donor program in which there were no candidates for transplantation Pancreatic cancer tissue c mRNA

Notes: