![]() |
欢乐的熊猫 · 温州三张照片亮相国博 ...· 1 年前 · |
![]() |
千杯不醉的冰棍 · 沈阳地铁3号线最新消息来了|车站|富民街|交 ...· 1 年前 · |
![]() |
酷酷的羊肉串 · 这些你应该掌握的宝玉石常识,了解一下!-新华网· 1 年前 · |
![]() |
逃跑的啤酒 · 【长安UNI-V ...· 2 年前 · |
![]() |
时尚的牛肉面 · 思皓爱跑正式上市 ...· 2 年前 · |
知其然而不知其所以然本不属于三行的风格,探索模型背后的数理支撑往往比单纯实现模型来得更有魅力. 这一节,将阐释因子分析模型背后的数理基础.
预备知识
特征值和特征向量
设C是一个p*p的方阵,矩阵C的特征值就是C的特征方程的根,即
而关于特征值的特征向量就是
的非0解向量,其中E是p*p的单位矩阵.
设有n 个样本,每个样本有p个指标(变量),那么原始数据应该是一个n*p的矩阵
令原始数据经过0均值规范化后依然用X表示,因子分析的目的是将p个变量表示成m(m
其中称为公共因子,为特殊因子, 一般要求服从高斯分布. 写成矩阵形式为
其中
现在问题是把系数矩阵A构造出来,当作初始因子载荷矩阵,这里采用主成分方法,即计算原始数据的相关矩阵的特征值和特征向量.
设相关系数矩阵为p*p的C,由预备知识可求得p个特征值为且(因为相关系数矩阵C是严格主对角线占优矩阵),对应的特征向量为, 那么可令初始因子载荷矩阵
仅摘取前m(m
领取 专属20元代金券
Get大咖技术交流圈
扫码关注腾讯云开发者
领取腾讯云代金券
Copyright © 2013 - 2023 Tencent Cloud. All Rights Reserved. 腾讯云 版权所有
深圳市腾讯计算机系统有限公司 ICP备案/许可证号: 粤B2-20090059 深公网安备号 44030502008569
腾讯云计算(北京)有限责任公司 京ICP证150476号 | 京ICP备11018762号 | 京公网安备号11010802020287
![]() |
酷酷的羊肉串 · 这些你应该掌握的宝玉石常识,了解一下!-新华网 1 年前 |