R:进阶-Tidyverse和条件循环

Tidyverse

《R数据科学》 (大神全套体系)

  • ggplot2:数据可视化
  • dplyr:数据转换和处理数据关系
  • readr:数据导入
  • stringr:处理字符串
  • 一、tidyr

    数据清理,转化为标准表格,tidydata每个变量(variable)占一列,每个观测(observation)占一行

    1. 数据清理

    test <- data.frame(geneid = paste0("gene",1:4),
                     sample1 = c(1,4,7,10),
                     sample2 = c(2,5,0.8,11),
                     sample3 = c(0.3,6,9,12))
    
    (1)扁变长
    test_gather <- gather(data = test,
                        key = sample_nm,
                        value = exp,
                        - geneid)
    head(test_gather)
    
    (2)长变扁
    test_re <- spread(data = test_gather,
                    key = sample_nm,
                    value = exp)
    head(test_re)
    

    2. 分割和合并

    test <- data.frame(x = c( "a,b", "a,d", "b,c"));test
    
    (1)分割
    test_seprate <- separate(test,x, c("X", "Y"),sep = ",");test_seprate
    
    (2)合并
    test_re <- unite(test_seprate,"x",X,Y,sep = ",")
    

    3. 处理NA

    X<-data.frame(X1 = LETTERS[1:5],X2 = 1:5)
    X[2,2] <- NA
    X[4,1] <- NA
    
    (1)去掉含有NA的行,可以选择只根据某一列来去除
    drop_na(X)
    drop_na(X,X1)
    drop_na(X,X2)
    
    (2)替换NA
    replace_na(X$X2,0)
    
    (3)用上一行的值填充NA
    fill(X,X2)
    

    完整操作:https://www.rstudio.com/resources/cheatsheets/

    二、dplyr

    test <- iris[c(1:2,51:52,101:102),]
    rownames(test) =NULL
    

    1. 五个基础函数

    (1)mutate():新增列
    mutate(test, new = Sepal.Length * Sepal.Width)
    test$new = test$Sepal.Length * test$Sepal.Width #base包方式
    
    (2)select():按列筛选
  • 按列号筛选
  • select(test,1)
    select(test,c(1,5))
    
  • 按列名筛选
  • select(test,Sepal.Length)
    select(test, Petal.Length, Petal.Width)
    vars <- c("Petal.Length", "Petal.Width")
    select(test, one_of(vars))
    
  • 一组来自tidyselect的有用函数
  • select(test, starts_with("Petal"))
    select(test, ends_with("Width"))
    select(test, contains("etal"))
    select(test, matches(".t."))
    select(test, everything())
    select(test, last_col())
    select(test, last_col(offset = 1))
    
  • 利用everything() 列名可以重排序
  • select(test,Species,everything())
    
    (3)filter():筛选行
    filter(test, Species == "setosa")
    filter(test, Species == "setosa"&Sepal.Length > 5 )
    filter(test, Species %in% c("setosa","versicolor"))
    
    (4)arrange():按某一列对整个表格进行排序
    arrange(test, Sepal.Length) #默认从小到大排序
    arrange(test, desc(Sepal.Length)) #desc即从大到小
    arrange(test, desc(Sepal.Width),Sepal.Length) #但两行相同时,亚条件排序
    
    (5)summarise():汇总

    对数据进行汇总操作,结合group_by使用实用性强

    summarise(test, mean(Sepal.Length), sd(Sepal.Length)) #计算Sepal.Length的平均值和标准差
    # 先按照Species分组,计算每组Sepal.Length的平均值和标准差
    group_by(test, Species)
    tmp = summarise(group_by(test, Species),mean(Sepal.Length), sd(Sepal.Length))
    

    2. 两个实用技能

    (1)管道操作 %>% (cmd/ctr + shift + M)
    library(dplyr)
    x1 = filter(iris,Sepal.Width>3)
    x2 = select(x1,c("Sepal.Length","Sepal.Width" ))
    x3 = arrange(x2,Sepal.Length)
    colnames(iris)
    iris %>% 
      filter(Sepal.Width>3) %>% 
      select(c("Sepal.Length","Sepal.Width" ))%>%
      arrange(Sepal.Length)
    #上一行结果做下一行的主对象
    
    (2)count:统计某列的unique值
    count(test,Species) #数据框
    table(test$Species) #base包,向量
    

    3. 处理关系数据:将2个表进行连接,注意:不要引入factor

    options(stringsAsFactors = F)
    test1 <- data.frame(name = c('jimmy','nicker','doodle'), 
                        blood_type = c("A","B","O"))
    test1
    test2 <- data.frame(name = c('doodle','jimmy','nicker','tony'),
                        group = c("group1","group1","group2","group2"),
                        vision = c(4.2,4.3,4.9,4.5))
    test2 
    test3 <- data.frame(NAME = c('doodle','jimmy','lucy','nicker'),
                        weight = c(140,145,110,138))
    merge(test1,test2,by="name")
    merge(test1,test3,by.x = "name",by.y = "NAME")
    
    (1)內连inner_join:取交集,相同行,合并列
    inner_join(test1, test2, by = "name")
    inner_join(test1,test3,by = c("name"="NAME"))
    
    (2)左连left_join:取主表行,合并列,缺失值NA
    left_join(test1, test2, by = 'name') #前为主表
    left_join(test2, test1, by = 'name')
    
    (3)全连full_join:全两表所有行,合并列
    full_join(test1, test2, by = 'name')
    
    (4)半连接:返回能够与y表匹配的x表所有记录,取x与y表相同行,x所有列
    semi_join(x = test1, y = test2, by = 'name')
    
    (5)反连接:返回无法与y表匹配的x表的所记录 取x与y表差异行,x所有列
    anti_join(x = test2, y = test1, by = 'name')
    
    (6)数据的简单合并
  • 相当于base包里的cbind()函数和rbind()函数
  • bind_rows()函数需要两个表格列数相同,而bind_cols()函数则需要两个数据框有相同的行数
  • test1 <- data.frame(x = c(1,2,3,4), y = c(10,20,30,40))
    test1
    test2 <- data.frame(x = c(5,6), y = c(50,60))
    test2
    test3 <- data.frame(z = c(100,200,300,400))
    test3
    bind_rows(test1, test2)
    bind_cols(test1, test3)
    

    三、stringr

    str_split(x," ") #列表
    x2 = str_split(x," ")[[1]] #取列表
    y = c("jimmy 150","nicker 140","tony 152")
    str_split(y," ")
    str_split(y," ",simplify = T) #simplify后得到矩阵
    str_c(x2,collapse = " ") #x2的所有元素按空格“ ”连接在一起
    str_c(x2,1234,sep = "+") #两个参数
    

    3. 提取字符串的一部分

    str_sub(x,5,9)
    

    4. 大小写转换

    str_to_upper(x2)
    str_to_lower(x2)
    str_to_title(x2)
    

    5. 字符串定位

    str_locate(x2,"th")
    str_locate(x2,"h")
    

    6. 字符检测

    str_detect(x2,"h") #生成与X2等长的逻辑向量,可以取子集
    str_starts(x2,"T")
    str_ends(x2,"e")
    

    与sum和mean连用,可以统计匹配的个数和比例

    sum(str_detect(x2,"h")) #Ture的个数
    mean(str_detect(x2,"h")) #Ture占全部的比例
    

    7. 提取匹配到的字符串

    str_extract(x2,"th|Th") #|或者,默认提取第一次出
    str_extract_all(x2,"o") #列表
    str_extract_all(x2,"o",simplify = T) #矩阵,“”空字符串
    

    8. 字符删除

    str_remove(x," ") #只删掉第一个
    str_remove_all(x," ")  #删除所有
    str_remove_all(x2,"th")
    

    9. 字符串替换

    str_replace(x2,"o","A") #只替换第一个
    str_replace_all(x2,"o","A")
    

    结合正则表达式更加强大

    条件语句和循环语句

    一、条件语句

    1.if(){ }

    (1)只有if没有else,那么条件是FALSE时就什么都不做,只有一个逻辑值
    i = -1
    if (i<0) print('up')
    if (i>0) print('up')
    #理解下面代码
    if(!require(tidyr)) install.packages('tidyr')
    
    (2)有else:只有一个逻辑值
    if (i>0){ cat('+') #看看里面是什么内容 } else { print("-") #向量
    (3)ifelse:自带循环属性,可以有多个逻辑值,重点!
    ifelse(i>0,"+","-") 
    x=rnorm(3)
    ifelse(x>0,"+","-")
    
    (4)多个条件
    i = 0
    if (i>0){
      print('+')
    } else if (i==0) {
      print('0')
    } else if (i< 0){
      print('-')
    ifelse(i>0,"+",ifelse((i<0),"-","0"))
    

    2. switch()

    cd = 3
    foo <- switch(EXPR = cd, 
                  #EXPR = "aa", 
                  aa=c(3.4,1),
                  bb=matrix(1:4,2,2),
                  cc=matrix(c(T,T,F,T,F,F),3,2),
                  dd="string here",
                  ee=matrix(c("red","green","blue","yellow")))
    

    二、循环语句

    1.f or循环

    #**顺便看一下next和break**
    x <- c(5,6,0,3)
    for (i in x){
      s=s+i
      #if(i == 0) next
      #if (i == 0) break
      print(c(i,s))
    #x下标循环
    x <- c(5,6,0,3)
    s = 0
    for (i in 1:length(x)){
      s=s+x[[i]]
      print(c(x[[i]],s))
    

    如何将结果存下来?

    s = 0
    result = list()  #先声明是列表,然后往列表里一个一个加元素
    for(i in 1:length(x)){
      s=s+x[[i]]
      result[[i]] = c(x[[i]],s)
    do.call(cbind,result)
    

    2. while 循环

    i = 0
    while (i < 5){
      print(c(i,i^2))
      i = i+1
    

    3. repeat 语句

    #注意:必须有break
    repeat{
     i = i + 1
     s = s + i
     print(c(i,s))
     if(i==50) break
    

    4. apply函数

  • apply(x,MARGIN,FUN)
  • x是数据框/矩阵名
  • MARGIN为1表示取行,2表示取列
  • FUN是函数
  • 对x的每一行/列进行FUN这个函数
  • sapply(list,fun) #对列表进行循环
  • 长脚本管理方式

    1. 分成多个脚本,每个脚本最后将变量保存到Rdata,下一个脚本开头清空再加载
    file.rename(from,to) file.append(file1, file2) file.copy(from, to, overwrite = recursive, recursive = FALSE, copy.mode = TRUE, copy.date = FALSE)