def train_cn_tokenizer():
from pathlib import Path
from tokenizers import ByteLevelBPETokenizer
paths = [str(x) for x in Path("zho-cn_web_2015_10K").glob("**/*.txt")]
tokenizer = ByteLevelBPETokenizer()
tokenizer.train(files=paths, vocab_size=52_000, min_frequency=3, special_tokens=[
"<s>",
"<pad>",
"</s>",
"<unk>",
"<mask>",
tokenizer.save( ".","zh-tokenizer-train")
我强烈建议,根据自己的业务定制自己的vocab,当然要配套模型。
最后的结果
{"<s>":0,"<pad>":1,"</s>":2,"<unk>":3,"<mask>":4,"!":5,"\"":6,"#":7,"$":8,"%":9,"&":10,"'":11,"(":12,")":13,"*":14,"+":15,",":16,"-":17,".":18,"/":19,"0":20,"1":21,"2":22,"3":23,"4":24,"5":25,"6":26,"7":27,"8":28,"9":29,":":30,";":31,"<":32,"=":33,">":34,"?":35,"@":36,"A":37,"B":38,"C":39,"D":40,"E":41,"F":42,"G":43,"H":44,"I":45,"J":46,"K":47,"L":48,"M":49,"N":50,"O":51,"P":52,"Q":53,"R":54,"S":55,"T":56,"U":57,"V":58,"W":59,"X":60,"Y":61,"Z":62,"[":63,"\\":64,"]":65,"^":66,"_":67,"`":68,"a":69,"b":70,"c":71,"d":72,"e":73,"f":74,"g":75,"h":76,"i":77,"j":78,"k":79,"l":80,"m":81,"n":82,"o":83,"p":84,"q":85,"r":86,"s":87,"t":88,"u":89,"v":90,"w":91,"x":92,"y":93,"z":94,"{":95,"|":96,"}":97,"~":98,"¡":99,"¢":100,"£":101,"¤":102,"¥":103,"¦":104,"§":105,"¨":106,"©":107,"ª":108,"«":109,"¬":110,"®":111,"¯":112,"°":113,"±":114,"²":115,"³":116,"´":117,"µ":118,"¶":119,"·":120,"¸":121,"¹":122,"º":123,"»":124,"¼":125,"½":126,"¾":127,"¿":128,"À":129,"Á":130,"Â":131,"Ã":132,"Ä":133,"Å":134,"Æ":135,
- 理论结合实践,敲代码仔细深度理解。
- tokenzier的本质是分词,提取有意义的wordpiece,又尽可能的少,用尽量少的信息单元来描述无限的组合。
- 几个类的集成理清楚。
- 里面的细节可以继续阅读原始类来继续跟进。
- wordpiece是比word更小的概念,有何好处? 能解决oov吗。 需要再次思考。
- https://albertauyeung.github.io/2020/06/19/bert-tokenization.html
- https://spacy.io/usage/spacy-101
- https://huggingface.co/transformers/main_classes/tokenizer.html#transformers.PreTrainedTokenizer
- https://zhuanlan.zhihu.com/p/160813500
- https://github.com/google/sentencepiece
- https://huggingface.co/transformers/tokenizer_summary.html
- https://huggingface.co/blog/how-to-train
bert第三篇:tokenizer
文章目录tokenizer基本含义bert里涉及的tokenizerBasicTokenzerwordpiecetokenizerFullTokenzierPretrainTokenizer关系图实操如何训练训练自己中文的tokenizer总结引用tokenizer基本含义tokenizer就是分词器; 只不过在bert里和我们理解的中文分词不太一样,主要不是分词方法的问题,bert里基本都是最大匹配方法。最大的不同在于“词”的理解和定义。 比如:中文基本是字为单位。英文则是subword的概念,例
bert包括三个tokenizer:FullTokenizer,BasicTokenizer,WordpieceTokenizer,其中FullTokenizer就是调用后面两个
bert tokenizer is not actually suitable for Chinese (and we don't include code to learn WordPieces), but the Google SentencePiece toolkit does have good support for
AutoTokenizer是又一层的封装,避免了自己写attention_mask以及token_type_ids
import transformers
import config
origin_tokenizer = transformers.BertTokenizer.from_pretrained(config.pretrained_model_path)
auto_tokenizer = transformers.AutoTokenizer.from_pretrained(config.pret
1.什么是Tokenizer
使用文本的第一步就是将其拆分为单词。单词称为标记(token),将文本拆分为标记的过程称为标记化(tokenization),而标记化用到的模型或工具称为tokenizer。Keras提供了Tokenizer类,用于为深度学习文本文档的预处理。
2.创建Tokenizer实例
from keras.preprocessing.text import Tokenizer
tok = Tokenizer()
3.学习文本字典
##假设文本数据为:
docs = ['good
Introduciton
transformer类型的预训练模型层出不穷,其中的tokenizer方法作为一个非常重要的模块也出现了一些方法。本文对tokenizer方法做一些总结。参考来自hunggingface。
tokenizer在中文中叫做分词器,就是将句子分成一个个小的词块(token),生成一个词表,并通过模型学习到更好的表示。其中词表的大小和token的长短是很关键的因素,两者需要进行权衡,token太长,则它的表示也能更容易学习到,相应的词表也会变小;to...
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
print("词典大小:",tokenizer.vocab_size)
text = "the game has gone!unaffable I have a new GPU!"
tokens = tokenizer.tokenize(text)
print("英
Rust-tokenizersRust-tokenizer 为现代语言模型提供高性能的分词器,包括 WordPiece、字节对编码 (BPE) 和 Unigram (SentencePiece) 模型。这些标记器用于rust-bert crate。包括用于最先进转换器架构的广泛标记器,包括:句子片段(unigram 模型)伯特艾伯特蒸馏器罗伯塔GPTGPT2先知网控制基于词条的分词器包括单线程和多线程处理。字节对编码标记器倾向于使用共享缓存,并且仅可用作单线程标记器使用标记器需要手动下载标记器所需的文件(词汇表或合并文件)。这些可以在Transformers 库中找到。句子模型加载与C++ 库相同的.model proto 文件用法示例(Rust)let vocab= Arc::new (rust_tokenizers:: BertVocab::from_file (& vocab_path));let test_sentence= Example::new_from_string ("This is a sample sentence to be tokenized" );l
1.起因:
参照其他非官方教程,导致命令用错,同时改为其他人正常使用的命令后,忘记将更改后的文件在需要添加注释的地方添加注释,同时也没有认真注意提示的错误,因此,导致一直无法启动服务。
2.过程:
原本参照其他教程使用的启动服务的命令为python3 manage.py runserver,但发现命令执行后没有任何日志的打印输出,后续将其命令更改为python manage.py runserver即可正常启动。
一般来说,只要安装了匹配的python与django版本,并配置成功后基本都是可以直接访问的
在开发阶段的后端基址一般是
:http://127.0.0.1:8000
到了上线阶段肯定要改成公网地址,这时,我们前端在向后端发送请求的时候,如果都是直接使用http://127.0.0.1:8000,这样在上线前就要改很多的地址。
所以在vue开发阶段前,我们要设置好配置,用变量来承载基址http://127.0.0.1:8000,到时候要改地址,只需要改一个地址就可以了。
我们在做embedding的时候,通常会先做下tokenizer,然后再做word embedding,我们下面看看怎么来生成tokenizer。
1. 可以先搞一批raw data,可以从网上爬下来,也可以从已有的collection下载。
2. 做下分词,中文可以用结巴,英文用空格和特殊符号
3. 分词生成的terms,我们保存下来,每句话可以保存一行,每行多个terms,用空格分隔
4. 用分词的term生成tokenizer,并做下padding。我们这里只关注这个部分,其他部分可以参考其他