添加链接
link之家
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
相关文章推荐
稳重的保温杯  ·  npm ERR! errno 1 npm ...·  7 月前    · 
兴奋的西装  ·  unity双击没反应-掘金·  1 年前    · 
纯真的石榴  ·  [Solved] ...·  1 年前    · 

癌症是全球主要死因之一,迫切需要对其进行有效治疗。然而,癌症是高度异质的,这意味着一种癌症可以分为具有不同发病机制和结果的几种亚型。这被认为是限制癌症精准治疗的主要问题。因此,癌症亚型鉴定对于癌症的诊断和治疗具有重要意义。在这项工作中,我们提出了一种基于多组学和注意力机制的深度学习方法来有效识别癌症亚型。我们首先使用相似度网络融合来整合多组学数据来构建相似度图。然后,将患者的相似度图和特征矩阵输入到由图注意网络和组学级注意机制组成的图自动编码器中,学习嵌入表示。K-means 聚类方法应用于嵌入表示以识别癌症亚型。八个 TCGA 数据集的实验证实,与其他最先进的方法相比,我们提出的方法在癌症亚型识别方面表现更好。我们方法的源代码可在 https://github.com/kataomoi7/multiGATAE .

Cancer is one of the leading causes of death worldwide, which brings an urgent need for its effective treatment. However, cancer is highly heterogeneous, meaning that one cancer can be divided into several subtypes with distinct pathogenesis and outcomes. This is considered as the main problem which limits the precision treatment of cancer. Thus, cancer subtypes identification is of great importance for cancer diagnosis and treatment. In this work, we propose a deep learning method which is based on multi-omics and attention mechanism to effectively identify cancer subtypes. We first used similarity network fusion to integrate multi-omics data to construct a similarity graph. Then, the similarity graph and the feature matrix of the patient are input into a graph autoencoder composed of a graph attention network and omics-level attention mechanism to learn embedding representation. The K-means clustering method is applied to the embedding representation to identify cancer subtypes. The experiment on eight TCGA datasets confirmed that our proposed method performs better for cancer subtypes identification when compared with the other state-of-the-art methods. The source codes of our method are available at https://github.com/kataomoi7/multiGATAE .