信贷反欺诈的常用手段:名单库、专家策略、机器学习
低廉的造假成本和层出不穷的欺诈手段,给一个信贷机构带来的不仅仅是风险损失,更给信贷机构带来极大的挑战。在整个信贷流程中,如何在贷前申请中准备快速地识别欺诈风险,将欺诈群体拒之门外是业务的重中之重。
欺诈从本质上来看是操作风险的一种。在信贷行业,据悉70%以上的风险来自欺诈风险,而欺诈形式多种多样,如身份造假、中介黑产、内外勾结等等。从欺诈主体来看,可以分为第一方欺诈、第二方欺诈、第三方欺诈。
那么,该如何在贷前阶段做好申请反欺诈呢?其实要解决的问题无非就是判断申请借款的是人还是机器?是本人还是他人?是价值用户还是无效用户?目前贷前反欺诈常用的手段有名单库、专家策略、机器学习等。
名单库筛选就是我们常说的黑白名单。名单库一般通过平台内部进行积累,或与其他合作机构合作进行获取。黑名单在很大程度上避免了重复欺诈行为的发生,也是一种逻辑简单、成本较低的反欺诈手段。
贷前反欺诈一般都是先有专家策略进行冷启动,等数据积累到一定程度的时再慢慢地对数据进行挖掘,并对策略进行调优或者构建模型。
顶象技术在贷前反欺诈策略方面有较为丰富的策略模板,通过对客户个人信息、设备指纹、操作行为、位置等各个维度进行欺诈识别,帮助合作方识别出风险较高的客户,力争将合作方的欺诈风险降至最低。
近年来,机器学习在反欺诈方面的应用越来越广。常见的机器学习反欺诈分为有监督和无监督两种,它们通过机器学习方法,收集客户各个维度的数据,结合当前用户特征,与欺诈建立起关联关系,实时识别用户欺诈行为。