next);
BTreeSearch(node, key);
B+树是B-树的变种,它与B-树的不同之处在于:
在B+树中,key 的副本存储在内部节点,真正的 key 和 data 存储在叶子节点上 。
n 个 key 值的节点指针域为 n 而不是 n+1。
如下图为一颗B+树:
因为内节点并不存储 data,所以一般B+树的叶节点和内节点大小不同,而B-树的每个节点大小一般是相同的,为一页。
为了增加 区间访问性,一般会对B+树做一些优化。
如下图带顺序访问的B+树。
B-树和B+树的区别
1.B+树内节点不存储数据,所有 data 存储在叶节点导致查询时间复杂度固定为 log n。而B-树查询时间复杂度不固定,与 key 在树中的位置有关,最好为O(1)。
如下所示B-树/B+树查询节点 key 为 50 的 data。
从上图可以看出,key 为 50 的节点就在第一层,B-树只需要一次磁盘 IO 即可完成查找。所以说B-树的查询最好时间复杂度是 O(1)。
由于B+树所有的 data 域都在根节点,所以查询 key 为 50的节点必须从根节点索引到叶节点,时间复杂度固定为 O(log n)。
2.B+树叶节点两两相连可大大增加区间访问性,可使用在范围查询等,而B-树每个节点 key 和 data 在一起,则无法区间查找。
根据空间局部性原理:如果一个存储器的某个位置被访问,那么将它附近的位置也会被访问。
B+树可以很好的利用局部性原理,若我们访问节点 key为 50,则 key 为 55、60、62 的节点将来也可能被访问,我们可以利用磁盘预读原理提前将这些数据读入内存,减少了磁盘 IO 的次数。
当然B+树也能够很好的完成范围查询。比如查询 key 值在 50-70 之间的节点。
3.B+树更适合外部存储。由于内节点无 data 域,每个节点能索引的范围更大更精确
这个很好理解,由于B-树节点内部每个 key 都带着 data 域,而B+树节点只存储 key 的副本,真实的 key 和 data 域都在叶子节点存储。前面说过磁盘是分 block 的,一次磁盘 IO 会读取若干个 block,具体和操作系统有关,那么由于磁盘 IO 数据大小是固定的,在一次 IO 中,单个元素越小,量就越大。这就意味着B+树单次磁盘 IO 的信息量大于B-树,从这点来看B+树相对B-树磁盘 IO 次数少。
为什么 MongoDB 索引选择B-树,而 Mysql 索引选择B+树
这些内容了解后,我们来看为什么 MongoDB 索引选择B-树,而 Mysql (InooDB 引擎)索引选择B+树。
Mysql 大家应该比较熟悉,传统的关系型数据库,下面介绍下 MongoDB。
来看下 wiki 百科上 MongoDB 的定义:
MongoDB (from humongous) is a cross-platform document-oriented database. Classified as a NoSQL database, MongoDB eschews the traditional table-based relational database structure in favor of JSON-like documents with dynamic schemas (MongoDB calls the format BSON)
这段话的大致意思是 MongoDB 是文档型的数据库,是一种 nosql,它使用类 Json 格式保存数据。
文档型数据库和我们常见的关系型数据库不同,一般使用 XML 或 Json 格式来保存数据,归属于聚合型数据库。
键值数据库也属于聚合型数据库,熟悉 Redis 的同学应该很好理解。
举个例子:
加入我们要建立一个电子商务网站,类似淘宝这种将商品销售给用户,那么必须存储用户信息、商品目录、订单、收货地址、账单地址、付款方式等。
看下传统的关系型数据库是如何存储的:
聚合型数据库存储模型:
用类似 Json 的格式表示如下:
相对于 Mysql 关系型数据库,MongoDB 这类 nosql 适用于数据模型简单,性能要求高的场合。
为什么 MongoDB 使用B-树
MongoDB 是一种 nosql,也存储在磁盘上,被设计用在 数据模型简单,性能要求高的场合。性能要求高,看看B/B+树的区别第一点:
B+树内节点不存储数据,所有 data 存储在叶节点导致查询时间复杂度固定为 log n。而B-树查询时间复杂度不固定,与 key 在树中的位置有关,最好为O(1)
我们说过,尽可能少的磁盘 IO 是提高性能的有效手段。MongoDB 是聚合型数据库,而 B-树恰好 key 和 data 域聚合在一起。
为什么 Mysql 使用B+树
Mysql 是一种关系型数据库,区间访问是常见的一种情况,而 B-树并不支持区间访问(可参见上图),而B+树由于数据全部存储在叶子节点,并且通过指针串在一起,这样就很容易的进行区间遍历甚至全部遍历。
见B/B+树的区别第二点:
B+树叶节点两两相连可大大增加区间访问性,可使用在范围查询等,而B-树每个节点 key 和 data 在一起,则无法区间查找。